Vector Signal Reconstruction Sparse and Parametric Approach of direction of arrival Using Single Vector Hydrophone

Jiabin Guo
{"title":"Vector Signal Reconstruction Sparse and Parametric Approach of direction of arrival Using Single Vector Hydrophone","authors":"Jiabin Guo","doi":"arxiv-2404.15160","DOIUrl":null,"url":null,"abstract":"This article discusses the application of single vector hydrophones in the\nfield of underwater acoustic signal processing for Direction Of Arrival (DOA)\nestimation. Addressing the limitations of traditional DOA estimation methods in\nmulti-source environments and under noise interference, this study introduces a\nVector Signal Reconstruction Sparse and Parametric Approach (VSRSPA). This\nmethod involves reconstructing the signal model of a single vector hydrophone,\nconverting its covariance matrix into a Toeplitz structure suitable for the\nSparse and Parametric Approach (SPA) algorithm. The process then optimizes it\nusing the SPA algorithm to achieve more accurate DOA estimation. Through\ndetailed simulation analysis, this research has confirmed the performance of\nthe proposed algorithm in single and dual-target DOA estimation scenarios,\nespecially under various signal-to-noise ratio(SNR) conditions. The simulation\nresults show that, compared to traditional DOA estimation methods, this\nalgorithm has significant advantages in estimation accuracy and resolution,\nparticularly in multi-source signals and low SNR environments. The contribution\nof this study lies in providing an effective new method for DOA estimation with\nsingle vector hydrophones in complex environments, introducing new research\ndirections and solutions in the field of vector hydrophone signal processing.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.15160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article discusses the application of single vector hydrophones in the field of underwater acoustic signal processing for Direction Of Arrival (DOA) estimation. Addressing the limitations of traditional DOA estimation methods in multi-source environments and under noise interference, this study introduces a Vector Signal Reconstruction Sparse and Parametric Approach (VSRSPA). This method involves reconstructing the signal model of a single vector hydrophone, converting its covariance matrix into a Toeplitz structure suitable for the Sparse and Parametric Approach (SPA) algorithm. The process then optimizes it using the SPA algorithm to achieve more accurate DOA estimation. Through detailed simulation analysis, this research has confirmed the performance of the proposed algorithm in single and dual-target DOA estimation scenarios, especially under various signal-to-noise ratio(SNR) conditions. The simulation results show that, compared to traditional DOA estimation methods, this algorithm has significant advantages in estimation accuracy and resolution, particularly in multi-source signals and low SNR environments. The contribution of this study lies in providing an effective new method for DOA estimation with single vector hydrophones in complex environments, introducing new research directions and solutions in the field of vector hydrophone signal processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用单矢量水听器的到达方向矢量信号重构稀疏和参数方法
本文讨论了单矢量水听器在水下声学信号处理领域中对到达方向(DOA)估计的应用。针对传统 DOA 估算方法在多声源环境和噪声干扰下的局限性,本研究引入了矢量信号稀疏和参数重构方法(VSRSPA)。该方法包括重建单个矢量水听器的信号模型,将其协方差矩阵转换为适合稀疏和参数方法(SPA)算法的托普利兹结构。然后利用 SPA 算法对其进行优化,以实现更精确的 DOA 估计。通过详细的仿真分析,本研究证实了所提算法在单目标和双目标 DOA 估计场景中的性能,尤其是在各种信噪比(SNR)条件下。仿真结果表明,与传统的 DOA 估计方法相比,该算法在估计精度和分辨率方面具有显著优势,尤其是在多源信号和低信噪比环境下。本研究的贡献在于为复杂环境下的单矢量水听器 DOA 估计提供了一种有效的新方法,为矢量水听器信号处理领域引入了新的研究方向和解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1