{"title":"Asymptotic properties of resampling‐based processes for the average treatment effect in observational studies with competing risks","authors":"Jasmin Rühl, Sarah Friedrich","doi":"10.1111/sjos.12714","DOIUrl":null,"url":null,"abstract":"In observational studies with time‐to‐event outcomes, the g‐formula can be used to estimate a treatment effect in the presence of confounding factors. However, the asymptotic distribution of the corresponding stochastic process is complicated and thus not suitable for deriving confidence intervals or time‐simultaneous confidence bands for the average treatment effect. A common remedy are resampling‐based approximations, with Efron's nonparametric bootstrap being the standard tool in practice. We investigate the large sample properties of three different resampling approaches and prove their asymptotic validity in a setting with time‐to‐event data subject to competing risks. The usage of these approaches is demonstrated by an analysis of the effect of physical activity on the risk of knee replacement among patients with advanced knee osteoarthritis.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12714","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In observational studies with time‐to‐event outcomes, the g‐formula can be used to estimate a treatment effect in the presence of confounding factors. However, the asymptotic distribution of the corresponding stochastic process is complicated and thus not suitable for deriving confidence intervals or time‐simultaneous confidence bands for the average treatment effect. A common remedy are resampling‐based approximations, with Efron's nonparametric bootstrap being the standard tool in practice. We investigate the large sample properties of three different resampling approaches and prove their asymptotic validity in a setting with time‐to‐event data subject to competing risks. The usage of these approaches is demonstrated by an analysis of the effect of physical activity on the risk of knee replacement among patients with advanced knee osteoarthritis.
期刊介绍:
The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia.
It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications.
The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems.
The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.