Peng Wang, H. Henning Winter, Manfred H. Wagner, Dietmar Auhl
{"title":"Gelation of PU elastomers: rheological characterization for liquid additive manufacturing","authors":"Peng Wang, H. Henning Winter, Manfred H. Wagner, Dietmar Auhl","doi":"10.1007/s00397-024-01451-1","DOIUrl":null,"url":null,"abstract":"<div><p>Polyurethane (PU) is a versatile polymer with many applications in a wide range of products. A novel 3D printing technology called liquid additive manufacturing (LAM) extended its possibilities by generating PU elastomers with gradient properties in continuous processing. LAM, being a relatively new technique, has not been extensively researched, particularly in terms of the curing behavior of the liquid resin. In this work, we investigated the effect of composition on gelation time <i>t</i><sub>GP</sub> as measured by time-resolved mechanical spectroscopy (TRMS) and analyzed using the Winter–Chambon criterion with the assistance of the IRIS software. This method is more accurate than the previous approach, which involved time sweeps with a constant frequency. It was found that the gel time <i>t</i><sub>GP</sub> first decreased and then increased with increasing polyol ratio, ranging from 231 to 378 min. Furthermore, the crosslink densities of the different PU elastomers measured from the rheological and tensile tests were calculated and compared based on the theory of rubber elasticity. The crosslink density decreased with an increasing polyol ratio in both methods. However, the crosslink density values obtained from the rheological measurements were higher than those from the tensile tests. These findings demonstrate that adjusting the polyol ratio is an effective means of achieving gradient properties. The composition effects we measured offer valuable insights for the design of LAM–PU elastomers.</p></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"63 5","pages":"397 - 406"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00397-024-01451-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-024-01451-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Polyurethane (PU) is a versatile polymer with many applications in a wide range of products. A novel 3D printing technology called liquid additive manufacturing (LAM) extended its possibilities by generating PU elastomers with gradient properties in continuous processing. LAM, being a relatively new technique, has not been extensively researched, particularly in terms of the curing behavior of the liquid resin. In this work, we investigated the effect of composition on gelation time tGP as measured by time-resolved mechanical spectroscopy (TRMS) and analyzed using the Winter–Chambon criterion with the assistance of the IRIS software. This method is more accurate than the previous approach, which involved time sweeps with a constant frequency. It was found that the gel time tGP first decreased and then increased with increasing polyol ratio, ranging from 231 to 378 min. Furthermore, the crosslink densities of the different PU elastomers measured from the rheological and tensile tests were calculated and compared based on the theory of rubber elasticity. The crosslink density decreased with an increasing polyol ratio in both methods. However, the crosslink density values obtained from the rheological measurements were higher than those from the tensile tests. These findings demonstrate that adjusting the polyol ratio is an effective means of achieving gradient properties. The composition effects we measured offer valuable insights for the design of LAM–PU elastomers.
期刊介绍:
"Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications.
The Scope of Rheologica Acta includes:
- Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology
- Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food.
- Rheology of Solids, chemo-rheology
- Electro and magnetorheology
- Theory of rheology
- Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities
- Interfacial rheology
Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."