Construction of immune-related gene pairs signature to predict the overall survival of multiple myeloma patients based on whole bone marrow gene expression profiling
{"title":"Construction of immune-related gene pairs signature to predict the overall survival of multiple myeloma patients based on whole bone marrow gene expression profiling","authors":"Farideh Jafari-Raddani, Zeinab Davoodi-Moghaddam, Davood Bashash","doi":"10.1007/s00438-024-02140-7","DOIUrl":null,"url":null,"abstract":"<p>Multiple myeloma (MM) is a plasma cell dyscrasia that is characterized by the uncontrolled proliferation of malignant PCs in the bone marrow. Due to immunotherapy, attention has returned to the immune system in MM, and it appears necessary to identify biomarkers in this area. In this study, we created a prognostic model for MM using immune-related gene pairs (IRGPs), with the advantage that it is not affected by technical bias. After retrieving microarray data of MM patients, bioinformatics analyses like COX regression and least absolute shrinkage and selection operator (LASSO) were used to construct the signature. Then its prognostic value is assessed via time-dependent receiver operating characteristic (ROC) and the Kaplan–Meier (KM) analysis. We also used XCELL to examine the status of immune cell infiltration among MM patients. 6-IRGP signatures were developed and proved to predict MM prognosis with a P-value of 0.001 in the KM analysis. Moreover, the risk score was significantly associated with clinicopathological characteristics and was an independent prognostic factor. Of note, the combination of age and β2-microglobulin with risk score could improve the accuracy of determining patients’ prognosis with the values of the area under the curve (AUC) of 0.73 in 5 years ROC curves. Our model was also associated with the distribution of immune cells. This novel signature, either alone or in combination with age and β2-microglobulin, showed a good prognostic predictive value and might be used to guide the management of MM patients in clinical practice.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-024-02140-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple myeloma (MM) is a plasma cell dyscrasia that is characterized by the uncontrolled proliferation of malignant PCs in the bone marrow. Due to immunotherapy, attention has returned to the immune system in MM, and it appears necessary to identify biomarkers in this area. In this study, we created a prognostic model for MM using immune-related gene pairs (IRGPs), with the advantage that it is not affected by technical bias. After retrieving microarray data of MM patients, bioinformatics analyses like COX regression and least absolute shrinkage and selection operator (LASSO) were used to construct the signature. Then its prognostic value is assessed via time-dependent receiver operating characteristic (ROC) and the Kaplan–Meier (KM) analysis. We also used XCELL to examine the status of immune cell infiltration among MM patients. 6-IRGP signatures were developed and proved to predict MM prognosis with a P-value of 0.001 in the KM analysis. Moreover, the risk score was significantly associated with clinicopathological characteristics and was an independent prognostic factor. Of note, the combination of age and β2-microglobulin with risk score could improve the accuracy of determining patients’ prognosis with the values of the area under the curve (AUC) of 0.73 in 5 years ROC curves. Our model was also associated with the distribution of immune cells. This novel signature, either alone or in combination with age and β2-microglobulin, showed a good prognostic predictive value and might be used to guide the management of MM patients in clinical practice.
期刊介绍:
Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology.
The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.