{"title":"Digital twin-driven smelting process management method for converter steelmaking","authors":"Tianjie Fu, Shimin Liu, Peiyu Li","doi":"10.1007/s10845-024-02366-7","DOIUrl":null,"url":null,"abstract":"<p>The converter is an indispensable key equipment in the steel manufacturing industry. With the increasing demand for high-quality steel, there is an increasing demand for monitoring and controlling the status of the converter during the smelting process. Compared to other manufacturing industries, such as food processing and textile, converter steelmaking requires a larger keep-out zone due to its ultra-high temperatures and harsh smelting environment. This makes it difficult for personnel to fully understand, analyze, and manage the smelting process, resulting in low production efficiency and the inability to achieve consistently high-quality results. Aiming at the low virtual visualization level and insufficient monitoring ability of the converter steelmaking process, a process management method based on digital twin technology is proposed. Firstly, a digital twin system framework for full-process monitoring of converter steelmaking is proposed based on the analysis of the process characteristics of converter steelmaking. The proposed framework provides critical enabling technologies such as point cloud-based digital twin model construction, visual display, and steel endpoint analysis and prediction, to support full-process, high-fidelity intelligent monitoring. After conducting experiments, a digital twin-driven smelting process management system was developed to manage the entire smelting process. The system has proven to be effective as it increased the monthly production capacity by 77.7%. The waste of smelting materials has also been greatly reduced from 34% without the system to 7.8% with the system. Based on these results, it is evident that this system significantly enhances smelting efficiency and reduces both the costs and waste associated with the process.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"19 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02366-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The converter is an indispensable key equipment in the steel manufacturing industry. With the increasing demand for high-quality steel, there is an increasing demand for monitoring and controlling the status of the converter during the smelting process. Compared to other manufacturing industries, such as food processing and textile, converter steelmaking requires a larger keep-out zone due to its ultra-high temperatures and harsh smelting environment. This makes it difficult for personnel to fully understand, analyze, and manage the smelting process, resulting in low production efficiency and the inability to achieve consistently high-quality results. Aiming at the low virtual visualization level and insufficient monitoring ability of the converter steelmaking process, a process management method based on digital twin technology is proposed. Firstly, a digital twin system framework for full-process monitoring of converter steelmaking is proposed based on the analysis of the process characteristics of converter steelmaking. The proposed framework provides critical enabling technologies such as point cloud-based digital twin model construction, visual display, and steel endpoint analysis and prediction, to support full-process, high-fidelity intelligent monitoring. After conducting experiments, a digital twin-driven smelting process management system was developed to manage the entire smelting process. The system has proven to be effective as it increased the monthly production capacity by 77.7%. The waste of smelting materials has also been greatly reduced from 34% without the system to 7.8% with the system. Based on these results, it is evident that this system significantly enhances smelting efficiency and reduces both the costs and waste associated with the process.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.