Mária Golda, Gyula Hoffka, Scott Cherry, Joseph E. Tropea, George T. Lountos, David S. Waugh, Alexander Wlodawer, József Tőzsér, János András Mótyán
{"title":"P1′ specificity of the S219V/R203G mutant tobacco etch virus protease","authors":"Mária Golda, Gyula Hoffka, Scott Cherry, Joseph E. Tropea, George T. Lountos, David S. Waugh, Alexander Wlodawer, József Tőzsér, János András Mótyán","doi":"10.1002/prot.26693","DOIUrl":null,"url":null,"abstract":"Proteases that recognize linear amino acid sequences with high specificity became indispensable tools of recombinant protein technology for the removal of various fusion tags. Due to its stringent sequence specificity, the catalytic domain of the nuclear inclusion cysteine protease of tobacco etch virus (TEV PR) is also a widely applied reagent for enzymatic removal of fusion tags. For this reason, efforts have been made to improve its stability and modify its specificity. For example, P1′ autoproteolytic cleavage‐resistant mutant (S219V) TEV PR was found not only to be nearly impervious to self‐inactivation, but also exhibited greater stability and catalytic efficiency than the wild‐type enzyme. An R203G substitution has been reported to further relax the P1′ specificity of the enzyme, however, these results were obtained from crude intracellular assays. Until now, there has been no rigorous comparison of the P1′ specificity of the S219V and S219V/R203G mutants in vitro, under carefully controlled conditions. Here, we compare the P1′ amino acid preferences of these single and double TEV PR mutants. The in vitro analysis was performed by using recombinant protein substrates representing 20 P1′ variants of the consensus TENLYFQ*SGT cleavage site, and synthetic oligopeptide substrates were also applied to study a limited set of the most preferred variants. In addition, the enzyme–substrate interactions were analyzed in silico. The results indicate highly similar P1′ preferences for both enzymes, many side‐chains can be accommodated by the S1′ binding sites, but the kinetic assays revealed lower catalytic efficiency for the S219V/R203G than for the S219V mutant.","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":"14 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26693","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Proteases that recognize linear amino acid sequences with high specificity became indispensable tools of recombinant protein technology for the removal of various fusion tags. Due to its stringent sequence specificity, the catalytic domain of the nuclear inclusion cysteine protease of tobacco etch virus (TEV PR) is also a widely applied reagent for enzymatic removal of fusion tags. For this reason, efforts have been made to improve its stability and modify its specificity. For example, P1′ autoproteolytic cleavage‐resistant mutant (S219V) TEV PR was found not only to be nearly impervious to self‐inactivation, but also exhibited greater stability and catalytic efficiency than the wild‐type enzyme. An R203G substitution has been reported to further relax the P1′ specificity of the enzyme, however, these results were obtained from crude intracellular assays. Until now, there has been no rigorous comparison of the P1′ specificity of the S219V and S219V/R203G mutants in vitro, under carefully controlled conditions. Here, we compare the P1′ amino acid preferences of these single and double TEV PR mutants. The in vitro analysis was performed by using recombinant protein substrates representing 20 P1′ variants of the consensus TENLYFQ*SGT cleavage site, and synthetic oligopeptide substrates were also applied to study a limited set of the most preferred variants. In addition, the enzyme–substrate interactions were analyzed in silico. The results indicate highly similar P1′ preferences for both enzymes, many side‐chains can be accommodated by the S1′ binding sites, but the kinetic assays revealed lower catalytic efficiency for the S219V/R203G than for the S219V mutant.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.