Distributed accelerated gradient methods with restart under quadratic growth condition

IF 1.8 3区 数学 Q1 Mathematics Journal of Global Optimization Pub Date : 2024-04-24 DOI:10.1007/s10898-024-01395-z
Chhavi Sharma, Vishnu Narayanan, P. Balamurugan
{"title":"Distributed accelerated gradient methods with restart under quadratic growth condition","authors":"Chhavi Sharma, Vishnu Narayanan, P. Balamurugan","doi":"10.1007/s10898-024-01395-z","DOIUrl":null,"url":null,"abstract":"<p>We consider solving convex problems satisfying quadratic growth condition (QGC) over a distributed setting with no central server. Such problems are popular in distributed machine learning applications. When QGC growth parameter <i>c</i> is known, we propose distributed accelerated gradient methods with restarts, named PDACA and DACA respectively for constrained and unconstrained settings. In practical problems when <i>c</i> is unavailable, we design mPDACA and mDACA methods respectively for constrained and unconstrained settings, where novel distributed mechanisms are proposed to update the estimates of growth parameter <i>c</i> using only local quantities depending on local proximal operators or local gradients. We further derive theoretical guarantees and gradient computation and communication complexities for all four proposed algorithms. Extensive numerical experiments on logistic regression on different communication topologies showcase the utility of our algorithms in comparison with baseline methods.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"11 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01395-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We consider solving convex problems satisfying quadratic growth condition (QGC) over a distributed setting with no central server. Such problems are popular in distributed machine learning applications. When QGC growth parameter c is known, we propose distributed accelerated gradient methods with restarts, named PDACA and DACA respectively for constrained and unconstrained settings. In practical problems when c is unavailable, we design mPDACA and mDACA methods respectively for constrained and unconstrained settings, where novel distributed mechanisms are proposed to update the estimates of growth parameter c using only local quantities depending on local proximal operators or local gradients. We further derive theoretical guarantees and gradient computation and communication complexities for all four proposed algorithms. Extensive numerical experiments on logistic regression on different communication topologies showcase the utility of our algorithms in comparison with baseline methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二次增长条件下带重启的分布式加速梯度方法
我们考虑在没有中心服务器的分布式环境中解决满足二次增长条件(QGC)的凸问题。这类问题在分布式机器学习应用中很受欢迎。当 QGC 增长参数 c 已知时,我们提出了具有重启功能的分布式加速梯度方法,在有约束和无约束环境下分别命名为 PDACA 和 DACA。在 c 不可用的实际问题中,我们分别针对受限和无约束设置设计了 mPDACA 和 mDACA 方法,其中提出了新的分布式机制,仅使用取决于局部近算子或局部梯度的局部量来更新增长参数 c 的估计值。我们进一步推导了所有四种拟议算法的理论保证、梯度计算和通信复杂性。在不同通信拓扑结构上对逻辑回归进行的大量数值实验表明,与基线方法相比,我们的算法非常实用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Global Optimization
Journal of Global Optimization 数学-应用数学
CiteScore
0.10
自引率
5.60%
发文量
137
审稿时长
6 months
期刊介绍: The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest. In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.
期刊最新文献
Smoothing penalty approach for solving second-order cone complementarity problems Aircraft conflict resolution with trajectory recovery using mixed-integer programming Improved approximation algorithms for the k-path partition problem A QoS and sustainability-driven two-stage service composition method in cloud manufacturing: combining clustering and bi-objective optimization On convergence of a q-random coordinate constrained algorithm for non-convex problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1