A Synergistic Formal-Statistical Model for Recognizing Complex Human Activities

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Human-Machine Systems Pub Date : 2024-04-25 DOI:10.1109/THMS.2024.3382468
Nikolaos Bourbakis;Anargyros Angeleas
{"title":"A Synergistic Formal-Statistical Model for Recognizing Complex Human Activities","authors":"Nikolaos Bourbakis;Anargyros Angeleas","doi":"10.1109/THMS.2024.3382468","DOIUrl":null,"url":null,"abstract":"This article presents a view-independent synergistic model (formal and statistical) for efficiently recognizing complex human activities from video frames. To reduce the computational cost, the number of video frames is subsampled from 30 to 3 frames/s. SKD, a collaborative set of formal languages (\n<underline>S</u>\nOMA, \n<underline>K</u>\nINISIS, and \n<underline>D</u>\nRASIS), models simple and complex body actions and activities. SOMA language is a frame-based formal language representing body states (poses) extracted from frames. KINISIS is a formal language that uses the body poses extracted from SOMA to determine the consecutive poses (motion) that compose an activity. DRASIS language, finally, a convolution neural net, is used to classify simple activities, and an long short-term memory is used to recognize changes in activity. Experimental results using the SKD model on MSR Daily Activity three-dimensional (3-D) and UTKinect-Action3D datasets have shown that our method is among the top ones.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Human-Machine Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10508483/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a view-independent synergistic model (formal and statistical) for efficiently recognizing complex human activities from video frames. To reduce the computational cost, the number of video frames is subsampled from 30 to 3 frames/s. SKD, a collaborative set of formal languages ( S OMA, K INISIS, and D RASIS), models simple and complex body actions and activities. SOMA language is a frame-based formal language representing body states (poses) extracted from frames. KINISIS is a formal language that uses the body poses extracted from SOMA to determine the consecutive poses (motion) that compose an activity. DRASIS language, finally, a convolution neural net, is used to classify simple activities, and an long short-term memory is used to recognize changes in activity. Experimental results using the SKD model on MSR Daily Activity three-dimensional (3-D) and UTKinect-Action3D datasets have shown that our method is among the top ones.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
识别复杂人类活动的形式-统计协同模型
本文介绍了一种与视图无关的协同模型(形式和统计),用于从视频帧中高效识别复杂的人类活动。为降低计算成本,视频帧数的采样率从 30 帧/秒降至 3 帧/秒。SKD 是一组协作的形式语言(SOMA、KINISIS 和 DRASIS),可模拟简单和复杂的身体动作和活动。SOMA 语言是一种基于帧的形式语言,表示从帧中提取的身体状态(姿势)。KINISIS 是一种形式语言,它使用从 SOMA 中提取的身体姿势来确定构成活动的连续姿势(运动)。最后,DRASIS 语言是一种卷积神经网络,用于对简单的活动进行分类,而长短期记忆则用于识别活动的变化。在 MSR 日常活动三维(3-D)和UTKinect-Action3D 数据集上使用 SKD 模型的实验结果表明,我们的方法是最好的方法之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Human-Machine Systems
IEEE Transactions on Human-Machine Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
7.10
自引率
11.10%
发文量
136
期刊介绍: The scope of the IEEE Transactions on Human-Machine Systems includes the fields of human machine systems. It covers human systems and human organizational interactions including cognitive ergonomics, system test and evaluation, and human information processing concerns in systems and organizations.
期刊最新文献
Table of Contents Present a World of Opportunity IEEE Systems, Man, and Cybernetics Society Information IEEE Transactions on Human-Machine Systems Information for Authors TechRxiv: Share Your Preprint Research with the World!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1