T. Jamil, A. Iqbal, U. Allauddin, E. Ahmad, S. A. Hashmi, S. Saleem, M. Ikhlaq
{"title":"Fluid Coupled Structural Analysis and Optimization of Expanded Polystyrene-Fiber-Reinforced Composite Wing of an Unmanned Aerial Vehicle","authors":"T. Jamil, A. Iqbal, U. Allauddin, E. Ahmad, S. A. Hashmi, S. Saleem, M. Ikhlaq","doi":"10.1007/s11029-024-10185-3","DOIUrl":null,"url":null,"abstract":"<p>The growing demand for unmanned aerial vehicles (UAVs) in the wide range of commercial applications has necessitated engineers to develop lightweight and economical models that are simple to manufacture. This study focuses on the analysis of UAV wing a unconventionally manufactured medium altitude long endurance (MALE) by performing transient and static fluid structure interaction analysis. The wing was made of an expanded polystyrene (EPS) foam core reinforced by a glass and carbon fiber-reinforced polymer composite. The current study utilizes the one-way fluid-structure interaction technique to obtain the pressure profile from a computational fluid dynamics study, which then is used as a load boundary condition for the static and dynamic structural analyses of an EPS-reinforced composite wing to observe its failure characteristics under loading conditions. Modeling the composite laminate was conducted in the ANSYS Composite PrePost module with varying ply orientations to obtain an optimum configuration. The topology optimization of the wing core led to a 30.5% reduction in its overall weight, offering an economical and feasible solution for manufacturing UAVs on small and medium scales.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"266 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11029-024-10185-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The growing demand for unmanned aerial vehicles (UAVs) in the wide range of commercial applications has necessitated engineers to develop lightweight and economical models that are simple to manufacture. This study focuses on the analysis of UAV wing a unconventionally manufactured medium altitude long endurance (MALE) by performing transient and static fluid structure interaction analysis. The wing was made of an expanded polystyrene (EPS) foam core reinforced by a glass and carbon fiber-reinforced polymer composite. The current study utilizes the one-way fluid-structure interaction technique to obtain the pressure profile from a computational fluid dynamics study, which then is used as a load boundary condition for the static and dynamic structural analyses of an EPS-reinforced composite wing to observe its failure characteristics under loading conditions. Modeling the composite laminate was conducted in the ANSYS Composite PrePost module with varying ply orientations to obtain an optimum configuration. The topology optimization of the wing core led to a 30.5% reduction in its overall weight, offering an economical and feasible solution for manufacturing UAVs on small and medium scales.
期刊介绍:
Mechanics of Composite Materials is a peer-reviewed international journal that encourages publication of original experimental and theoretical research on the mechanical properties of composite materials and their constituents including, but not limited to:
damage, failure, fatigue, and long-term strength;
methods of optimum design of materials and structures;
prediction of long-term properties and aging problems;
nondestructive testing;
mechanical aspects of technology;
mechanics of nanocomposites;
mechanics of biocomposites;
composites in aerospace and wind-power engineering;
composites in civil engineering and infrastructure
and other composites applications.