Population-based iterated local search for batch scheduling on parallel machines with incompatible job families, release dates, and tardiness penalties

IF 1.3 4区 数学 Q2 MATHEMATICS, APPLIED Optimization Letters Pub Date : 2024-04-26 DOI:10.1007/s11590-024-02116-x
José Maurício Fernandes Medeiros, Anand Subramanian, Eduardo Queiroga
{"title":"Population-based iterated local search for batch scheduling on parallel machines with incompatible job families, release dates, and tardiness penalties","authors":"José Maurício Fernandes Medeiros, Anand Subramanian, Eduardo Queiroga","doi":"10.1007/s11590-024-02116-x","DOIUrl":null,"url":null,"abstract":"<p>This work addresses a parallel batch machine scheduling problem subject to tardiness penalties, release dates, and incompatible job families. In this environment, jobs of the same family are partitioned into batches and each batch is assigned to a machine. The objective is to determine the sequence in which the batches will be processed on each machine with a view of minimizing the total weighted tardiness. To solve the problem, we propose a population-based iterated local search algorithm that makes use of multiple neighborhood structures and an efficient perturbation mechanism. The algorithm also incorporates the time window decomposition (TWD) heuristic to generate the initial population and employs population control strategies aiming to promote individuals with higher fitness by combining the total weighted tardiness with the contribution to the diversity of the population. Extensive computational experiments were conducted on 4860 benchmark instances and the results obtained compare very favorably with those found by the best existing algorithms.</p>","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"13 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-024-02116-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work addresses a parallel batch machine scheduling problem subject to tardiness penalties, release dates, and incompatible job families. In this environment, jobs of the same family are partitioned into batches and each batch is assigned to a machine. The objective is to determine the sequence in which the batches will be processed on each machine with a view of minimizing the total weighted tardiness. To solve the problem, we propose a population-based iterated local search algorithm that makes use of multiple neighborhood structures and an efficient perturbation mechanism. The algorithm also incorporates the time window decomposition (TWD) heuristic to generate the initial population and employs population control strategies aiming to promote individuals with higher fitness by combining the total weighted tardiness with the contribution to the diversity of the population. Extensive computational experiments were conducted on 4860 benchmark instances and the results obtained compare very favorably with those found by the best existing algorithms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于群体的迭代局部搜索,用于在具有不兼容作业族、发布日期和迟到惩罚的并行机器上进行批量调度
这项研究解决的是并行批量机器调度问题,该问题会受到迟到惩罚、发布日期和不兼容作业系列的影响。在这种环境下,同一作业系列的作业被分成若干批次,每个批次分配给一台机器。目标是确定批次在每台机器上的处理顺序,以期最大限度地减少总加权迟到时间。为了解决这个问题,我们提出了一种基于群体的迭代局部搜索算法,该算法利用了多重邻域结构和高效的扰动机制。该算法还结合了时间窗分解(TWD)启发式来生成初始种群,并采用了种群控制策略,旨在通过将总加权延迟与对种群多样性的贡献相结合,促进个体具有更高的适应性。我们在 4860 个基准实例上进行了广泛的计算实验,结果与现有最佳算法的结果相比非常理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optimization Letters
Optimization Letters 管理科学-应用数学
CiteScore
3.40
自引率
6.20%
发文量
116
审稿时长
9 months
期刊介绍: Optimization Letters is an international journal covering all aspects of optimization, including theory, algorithms, computational studies, and applications, and providing an outlet for rapid publication of short communications in the field. Originality, significance, quality and clarity are the essential criteria for choosing the material to be published. Optimization Letters has been expanding in all directions at an astonishing rate during the last few decades. New algorithmic and theoretical techniques have been developed, the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge of all aspects of the field has grown even more profound. At the same time one of the most striking trends in optimization is the constantly increasing interdisciplinary nature of the field. Optimization Letters aims to communicate in a timely fashion all recent developments in optimization with concise short articles (limited to a total of ten journal pages). Such concise articles will be easily accessible by readers working in any aspects of optimization and wish to be informed of recent developments.
期刊最新文献
Minimizing the number of tardy jobs with generalized due-dates and position-dependent processing times A projected fixed point method for a class of vertical tensor complementarity problems The budgeted maximin share allocation problem Explicit iterative algorithms for solving the split equality problems in Hilbert spaces Convergence rate of projected subgradient method with time-varying step-sizes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1