Population-based iterated local search for batch scheduling on parallel machines with incompatible job families, release dates, and tardiness penalties
José Maurício Fernandes Medeiros, Anand Subramanian, Eduardo Queiroga
{"title":"Population-based iterated local search for batch scheduling on parallel machines with incompatible job families, release dates, and tardiness penalties","authors":"José Maurício Fernandes Medeiros, Anand Subramanian, Eduardo Queiroga","doi":"10.1007/s11590-024-02116-x","DOIUrl":null,"url":null,"abstract":"<p>This work addresses a parallel batch machine scheduling problem subject to tardiness penalties, release dates, and incompatible job families. In this environment, jobs of the same family are partitioned into batches and each batch is assigned to a machine. The objective is to determine the sequence in which the batches will be processed on each machine with a view of minimizing the total weighted tardiness. To solve the problem, we propose a population-based iterated local search algorithm that makes use of multiple neighborhood structures and an efficient perturbation mechanism. The algorithm also incorporates the time window decomposition (TWD) heuristic to generate the initial population and employs population control strategies aiming to promote individuals with higher fitness by combining the total weighted tardiness with the contribution to the diversity of the population. Extensive computational experiments were conducted on 4860 benchmark instances and the results obtained compare very favorably with those found by the best existing algorithms.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-024-02116-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work addresses a parallel batch machine scheduling problem subject to tardiness penalties, release dates, and incompatible job families. In this environment, jobs of the same family are partitioned into batches and each batch is assigned to a machine. The objective is to determine the sequence in which the batches will be processed on each machine with a view of minimizing the total weighted tardiness. To solve the problem, we propose a population-based iterated local search algorithm that makes use of multiple neighborhood structures and an efficient perturbation mechanism. The algorithm also incorporates the time window decomposition (TWD) heuristic to generate the initial population and employs population control strategies aiming to promote individuals with higher fitness by combining the total weighted tardiness with the contribution to the diversity of the population. Extensive computational experiments were conducted on 4860 benchmark instances and the results obtained compare very favorably with those found by the best existing algorithms.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.