Small object detection model for remote sensing images combining super-resolution assisted reasoning and dynamic feature fusion

IF 1.4 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Journal of Applied Remote Sensing Pub Date : 2024-04-01 DOI:10.1117/1.jrs.18.028503
Jun Yang, Tongyang Wang
{"title":"Small object detection model for remote sensing images combining super-resolution assisted reasoning and dynamic feature fusion","authors":"Jun Yang, Tongyang Wang","doi":"10.1117/1.jrs.18.028503","DOIUrl":null,"url":null,"abstract":"We provide an innovative methodology for detecting small objects in remote sensing imagery. Our method addresses challenges related to missed and false detections caused by the limited pixel representation of small objects. It integrates super-resolution technology with dynamic feature fusion to enhance detection accuracy. We introduce a cross-stage local feature fusion module to improve feature extraction. In addition, we propose a super-resolution network with soft thresholding to refine small object features, resulting in improving resolution of feature maps while reducing redundancy. Furthermore, we embed a dynamic fusion module based on feature space relationships into a dual-branch network to strengthen the role of the super-resolution branch. Experimental validation on DIOR and NWPU VHR-10 datasets shows mAP improvements to 73.9% and 93.7%, respectively, with FLOPs of 24.89G and 22.33G. Our method outperforms existing approaches regarding accuracy and number of parameters, effectively addressing challenges in small object detection in remote sensing imagery.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":"2016 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.028503","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We provide an innovative methodology for detecting small objects in remote sensing imagery. Our method addresses challenges related to missed and false detections caused by the limited pixel representation of small objects. It integrates super-resolution technology with dynamic feature fusion to enhance detection accuracy. We introduce a cross-stage local feature fusion module to improve feature extraction. In addition, we propose a super-resolution network with soft thresholding to refine small object features, resulting in improving resolution of feature maps while reducing redundancy. Furthermore, we embed a dynamic fusion module based on feature space relationships into a dual-branch network to strengthen the role of the super-resolution branch. Experimental validation on DIOR and NWPU VHR-10 datasets shows mAP improvements to 73.9% and 93.7%, respectively, with FLOPs of 24.89G and 22.33G. Our method outperforms existing approaches regarding accuracy and number of parameters, effectively addressing challenges in small object detection in remote sensing imagery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合超分辨率辅助推理和动态特征融合的遥感图像小目标检测模型
我们提供了一种在遥感图像中检测小物体的创新方法。我们的方法解决了因小物体像素有限而导致的漏检和误检问题。它整合了超分辨率技术和动态特征融合技术,以提高检测精度。我们引入了一个跨阶段局部特征融合模块来改进特征提取。此外,我们还提出了一种具有软阈值的超分辨率网络,用于细化小物体特征,从而提高了特征图的分辨率,同时减少了冗余。此外,我们还在双分支网络中嵌入了基于特征空间关系的动态融合模块,以加强超分辨率分支的作用。在 DIOR 和 NWPU VHR-10 数据集上的实验验证表明,mAP 分别提高了 73.9% 和 93.7%,FLOP 分别为 24.89G 和 22.33G。我们的方法在精度和参数数量上都优于现有方法,能有效解决遥感图像中的小目标检测难题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Remote Sensing
Journal of Applied Remote Sensing 环境科学-成像科学与照相技术
CiteScore
3.40
自引率
11.80%
发文量
194
审稿时长
3 months
期刊介绍: The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.
期刊最新文献
Monitoring soil moisture in cotton fields with synthetic aperture radar and optical data in arid and semi-arid regions Cascaded CNN and global–local attention transformer network-based semantic segmentation for high-resolution remote sensing image Coastal chlorophyll-a concentration estimation by fusion of Sentinel-2 multispectral instrument and in-situ hyperspectral data Spectral index for estimating leaf water content across diverse plant species using multiple viewing angles Optimal band selection using explainable artificial intelligence for machine learning-based hyperspectral image classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1