Identifying latent genetic interactions in genome-wide association studies using multiple traits

IF 10.4 1区 生物学 Q1 GENETICS & HEREDITY Genome Medicine Pub Date : 2024-04-25 DOI:10.1186/s13073-024-01329-0
Andrew J. Bass, Shijia Bian, Aliza P. Wingo, Thomas S. Wingo, David J. Cutler, Michael P. Epstein
{"title":"Identifying latent genetic interactions in genome-wide association studies using multiple traits","authors":"Andrew J. Bass, Shijia Bian, Aliza P. Wingo, Thomas S. Wingo, David J. Cutler, Michael P. Epstein","doi":"10.1186/s13073-024-01329-0","DOIUrl":null,"url":null,"abstract":"The \"missing\" heritability of complex traits may be partly explained by genetic variants interacting with other genes or environments that are difficult to specify, observe, and detect. We propose a new kernel-based method called Latent Interaction Testing (LIT) to screen for genetic interactions that leverages pleiotropy from multiple related traits without requiring the interacting variable to be specified or observed. Using simulated data, we demonstrate that LIT increases power to detect latent genetic interactions compared to univariate methods. We then apply LIT to obesity-related traits in the UK Biobank and detect variants with interactive effects near known obesity-related genes (URL: https://CRAN.R-project.org/package=lit ).","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"14 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-024-01329-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The "missing" heritability of complex traits may be partly explained by genetic variants interacting with other genes or environments that are difficult to specify, observe, and detect. We propose a new kernel-based method called Latent Interaction Testing (LIT) to screen for genetic interactions that leverages pleiotropy from multiple related traits without requiring the interacting variable to be specified or observed. Using simulated data, we demonstrate that LIT increases power to detect latent genetic interactions compared to univariate methods. We then apply LIT to obesity-related traits in the UK Biobank and detect variants with interactive effects near known obesity-related genes (URL: https://CRAN.R-project.org/package=lit ).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多性状识别全基因组关联研究中潜在的遗传交互作用
复杂性状的遗传率 "缺失 "的部分原因可能是遗传变异与其他基因或环境的相互作用,而这些基因或环境很难指定、观察和检测。我们提出了一种新的基于核的方法,称为潜在相互作用测试(LIT),用于筛选遗传相互作用,这种方法利用了多个相关性状的多向性,而不需要指定或观察相互作用变量。通过模拟数据,我们证明与单变量方法相比,LIT 提高了潜在遗传交互作用的检测能力。然后,我们将 LIT 应用于英国生物库中与肥胖相关的性状,并检测已知肥胖相关基因附近具有交互效应的变体(网址:https://CRAN.R-project.org/package=lit )。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Medicine
Genome Medicine GENETICS & HEREDITY-
CiteScore
20.80
自引率
0.80%
发文量
128
审稿时长
6-12 weeks
期刊介绍: Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.
期刊最新文献
HGVS Nomenclature 2024: improvements to community engagement, usability, and computability. SARS-CoV-2 introductions to the island of Ireland: a phylogenetic and geospatiotemporal study of infection dynamics. Epigenome-wide association studies identify novel DNA methylation sites associated with PTSD: a meta-analysis of 23 military and civilian cohorts. Patterns of genomic instability in > 2000 patients with ovarian cancer across six clinical trials evaluating olaparib. Spatial transcriptome profiling identifies DTX3L and BST2 as key biomarkers in esophageal squamous cell carcinoma tumorigenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1