Atomic layer molecular beam epitaxy of kagome magnet RMn6Sn6 (R = Er, Tb) thin films

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY APL Materials Pub Date : 2024-04-26 DOI:10.1063/5.0182595
Shuyu Cheng, Binzhi Liu, Igor Lyalin, Wenyi Zhou, Jinwoo Hwang, Roland K. Kawakami
{"title":"Atomic layer molecular beam epitaxy of kagome magnet RMn6Sn6 (R = Er, Tb) thin films","authors":"Shuyu Cheng, Binzhi Liu, Igor Lyalin, Wenyi Zhou, Jinwoo Hwang, Roland K. Kawakami","doi":"10.1063/5.0182595","DOIUrl":null,"url":null,"abstract":"Kagome lattices have garnered substantial interest because their band structure consists of topological flat bands and Dirac cones. The RMn6Sn6 (R = rare earth) compounds are particularly interesting because of the existence of the large intrinsic anomalous Hall effect (AHE), which originates from the gapped Dirac cones near the Fermi level. This makes RMn6Sn6 an outstanding candidate for realizing the high-temperature quantum AHE. The growth of RMn6Sn6 thin films is beneficial for both fundamental research and potential applications. However, most of the studies on RMn6Sn6 have focused on bulk crystals, and the synthesis of RMn6Sn6 thin films has not been reported so far. Here, we report the atomic layer molecular beam epitaxy growth, structural and magnetic characterizations, and transport properties of ErMn6Sn6 and TbMn6Sn6 thin films. It is especially noteworthy that TbMn6Sn6 thin films have out-of-plane magnetic anisotropy, which is important for realizing the quantum AHE. Our work paves the avenue toward the control of the AHE using devices patterned from RMn6Sn6 thin films.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"155 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0182595","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Kagome lattices have garnered substantial interest because their band structure consists of topological flat bands and Dirac cones. The RMn6Sn6 (R = rare earth) compounds are particularly interesting because of the existence of the large intrinsic anomalous Hall effect (AHE), which originates from the gapped Dirac cones near the Fermi level. This makes RMn6Sn6 an outstanding candidate for realizing the high-temperature quantum AHE. The growth of RMn6Sn6 thin films is beneficial for both fundamental research and potential applications. However, most of the studies on RMn6Sn6 have focused on bulk crystals, and the synthesis of RMn6Sn6 thin films has not been reported so far. Here, we report the atomic layer molecular beam epitaxy growth, structural and magnetic characterizations, and transport properties of ErMn6Sn6 and TbMn6Sn6 thin films. It is especially noteworthy that TbMn6Sn6 thin films have out-of-plane magnetic anisotropy, which is important for realizing the quantum AHE. Our work paves the avenue toward the control of the AHE using devices patterned from RMn6Sn6 thin films.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神目磁铁 RMn6Sn6(R = Er、Tb)薄膜的原子层分子束外延
由于卡戈米晶格的带状结构由拓扑平坦带和狄拉克锥组成,因此引起了人们的极大兴趣。RMn6Sn6(R = 稀土)化合物尤其引人关注,因为它存在巨大的本征反常霍尔效应(AHE),这种效应源自费米级附近的间隙狄拉克锥。这使得 RMn6Sn6 成为实现高温量子反常霍尔效应的杰出候选材料。RMn6Sn6 薄膜的生长有利于基础研究和潜在应用。然而,大多数关于 RMn6Sn6 的研究都集中在体晶上,RMn6Sn6 薄膜的合成迄今尚未见报道。在此,我们报告了 ErMn6Sn6 和 TbMn6Sn6 薄膜的原子层分子束外延生长、结构和磁性表征以及传输特性。特别值得一提的是,TbMn6Sn6 薄膜具有面外磁各向异性,这对于实现量子 AHE 非常重要。我们的工作为使用 RMn6Sn6 薄膜图案化器件控制 AHE 铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
APL Materials
APL Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
9.60
自引率
3.30%
发文量
199
审稿时长
2 months
期刊介绍: APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications. In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.
期刊最新文献
Energy harvesting and human motion sensing of a 2D piezoelectric hybrid organic–inorganic perovskite A first-principles study on structural stability and magnetoelectric coupling of two-dimensional BaTiO3 ultrathin film with Cr and Cu substituting Ti site Investigation of transverse exchange-springs in electrodeposited nano-heterostructured films through first-order reversal curve analysis Solid phase epitaxy of SrRuO3 encapsulated by SrTiO3 membranes Microgel-based etalon membranes: Characterization and properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1