Music Style Transfer With Diffusion Model

Hong Huang, Yuyi Wang, Luyao Li, Jun Lin
{"title":"Music Style Transfer With Diffusion Model","authors":"Hong Huang, Yuyi Wang, Luyao Li, Jun Lin","doi":"arxiv-2404.14771","DOIUrl":null,"url":null,"abstract":"Previous studies on music style transfer have mainly focused on one-to-one\nstyle conversion, which is relatively limited. When considering the conversion\nbetween multiple styles, previous methods required designing multiple modes to\ndisentangle the complex style of the music, resulting in large computational\ncosts and slow audio generation. The existing music style transfer methods\ngenerate spectrograms with artifacts, leading to significant noise in the\ngenerated audio. To address these issues, this study proposes a music style\ntransfer framework based on diffusion models (DM) and uses spectrogram-based\nmethods to achieve multi-to-multi music style transfer. The GuideDiff method is\nused to restore spectrograms to high-fidelity audio, accelerating audio\ngeneration speed and reducing noise in the generated audio. Experimental\nresults show that our model has good performance in multi-mode music style\ntransfer compared to the baseline and can generate high-quality audio in\nreal-time on consumer-grade GPUs.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.14771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Previous studies on music style transfer have mainly focused on one-to-one style conversion, which is relatively limited. When considering the conversion between multiple styles, previous methods required designing multiple modes to disentangle the complex style of the music, resulting in large computational costs and slow audio generation. The existing music style transfer methods generate spectrograms with artifacts, leading to significant noise in the generated audio. To address these issues, this study proposes a music style transfer framework based on diffusion models (DM) and uses spectrogram-based methods to achieve multi-to-multi music style transfer. The GuideDiff method is used to restore spectrograms to high-fidelity audio, accelerating audio generation speed and reducing noise in the generated audio. Experimental results show that our model has good performance in multi-mode music style transfer compared to the baseline and can generate high-quality audio in real-time on consumer-grade GPUs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用扩散模型的音乐风格转移
以往关于音乐风格转换的研究主要集中在一对一的风格转换上,局限性相对较大。在考虑多种风格之间的转换时,以往的方法需要设计多种模式来分离复杂的音乐风格,导致计算成本高、音频生成速度慢。现有的音乐风格转换方法生成的频谱图有人工痕迹,导致生成的音频有明显的噪声。针对这些问题,本研究提出了一种基于扩散模型(DM)的音乐风格转换框架,并使用基于频谱图的方法实现多音乐风格对多音乐风格的转换。GuideDiff 方法用于将频谱图还原为高保真音频,从而加快音频生成速度并减少生成音频中的噪音。实验结果表明,与基线相比,我们的模型在多模式音乐风格转换方面具有良好的性能,并能在消费级 GPU 上实时生成高质量音频。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1