Design and Evaluation of a Hierarchical Characterization and Adaptive Prediction Model for Cloud Workloads

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Cloud Computing Pub Date : 2024-04-24 DOI:10.1109/TCC.2024.3393114
Karthick Seshadri;Korrapati Sindhu;S. Nagesh Bhattu;Chidambaran Kollengode
{"title":"Design and Evaluation of a Hierarchical Characterization and Adaptive Prediction Model for Cloud Workloads","authors":"Karthick Seshadri;Korrapati Sindhu;S. Nagesh Bhattu;Chidambaran Kollengode","doi":"10.1109/TCC.2024.3393114","DOIUrl":null,"url":null,"abstract":"Workload characterization and subsequent prediction are significant steps in maintaining the elasticity and scalability of resources in Cloud Data Centers. Due to the high variance in cloud workloads, designing a prediction algorithm that models the variations in the workload is a non-trivial task. If the workload predictor is unable to handle the dynamism in the workloads, then the result of the predictor may lead to over-provisioning or under-provisioning of cloud resources. To address this problem, we have created a Super Markov Prediction Model (SMPM) whose behaviour changes as per the change in the workload patterns. As the time progresses, based on the workload pattern SMPM uses different sequence models to predict the future workload. To evaluate the proposed model, we have experimented with Alibaba trace 2018, Google Cluster Trace (GCT), Alibaba trace 2020 and TPC-W workload trace. We have compared SMPM's prediction results with existing state-of-the-art prediction models and empirically verified that the proposed prediction model achieves a better accuracy as quantified using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10508064/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Workload characterization and subsequent prediction are significant steps in maintaining the elasticity and scalability of resources in Cloud Data Centers. Due to the high variance in cloud workloads, designing a prediction algorithm that models the variations in the workload is a non-trivial task. If the workload predictor is unable to handle the dynamism in the workloads, then the result of the predictor may lead to over-provisioning or under-provisioning of cloud resources. To address this problem, we have created a Super Markov Prediction Model (SMPM) whose behaviour changes as per the change in the workload patterns. As the time progresses, based on the workload pattern SMPM uses different sequence models to predict the future workload. To evaluate the proposed model, we have experimented with Alibaba trace 2018, Google Cluster Trace (GCT), Alibaba trace 2020 and TPC-W workload trace. We have compared SMPM's prediction results with existing state-of-the-art prediction models and empirically verified that the proposed prediction model achieves a better accuracy as quantified using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计和评估云工作负载的分层特征描述和自适应预测模型
工作负载特征描述和后续预测是保持云数据中心资源弹性和可扩展性的重要步骤。由于云工作负载的变化很大,因此设计一种能够模拟工作负载变化的预测算法并非易事。如果工作负载预测器无法处理工作负载的动态变化,那么预测器的结果可能会导致云资源的过度分配或分配不足。为了解决这个问题,我们创建了一个超级马尔可夫预测模型(SMPM),其行为会随着工作负载模式的变化而改变。随着时间的推移,SMPM 会根据工作负载模式使用不同的序列模型来预测未来的工作负载。为了评估所提出的模型,我们使用 2018 年阿里巴巴跟踪、谷歌集群跟踪(GCT)、2020 年阿里巴巴跟踪和 TPC-W 工作负载跟踪进行了实验。我们将 SMPM 的预测结果与现有的最先进预测模型进行了比较,并通过实证验证了所提出的预测模型具有更高的准确性,并使用均方根误差(RMSE)和平均绝对误差(MAE)进行了量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
期刊最新文献
WorkloadDiff: Conditional Denoising Diffusion Probabilistic Models for Cloud Workload Prediction A Lightweight Privacy-Preserving Ciphertext Retrieval Scheme Based on Edge Computing Generative Adversarial Privacy for Multimedia Analytics Across the IoT-Edge Continuum Corrections to “DNN Surgery: Accelerating DNN Inference on the Edge through Layer Partitioning” FedPAW: Federated Learning With Personalized Aggregation Weights for Urban Vehicle Speed Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1