ASV station keeping under wind disturbances using neural network simulation error minimization model predictive control

IF 4.2 2区 计算机科学 Q2 ROBOTICS Journal of Field Robotics Pub Date : 2024-04-25 DOI:10.1002/rob.22346
Jalil Chavez-Galaviz, Jianwen Li, Ajinkya Chaudhary, Nina Mahmoudian
{"title":"ASV station keeping under wind disturbances using neural network simulation error minimization model predictive control","authors":"Jalil Chavez-Galaviz,&nbsp;Jianwen Li,&nbsp;Ajinkya Chaudhary,&nbsp;Nina Mahmoudian","doi":"10.1002/rob.22346","DOIUrl":null,"url":null,"abstract":"<p>Station keeping is an essential maneuver for autonomous surface vehicles (ASVs), mainly when used in confined spaces, to carry out surveys that require the ASV to keep its position or in collaboration with other vehicles where the relative position has an impact over the mission. However, this maneuver can become challenging for classic feedback controllers due to the need for an accurate model of the ASV dynamics and the environmental disturbances. This work proposes a model predictive controller using neural network simulation error minimization (NNSEM–MPC) to accurately predict the dynamics of the ASV under wind disturbances. The performance of the proposed scheme under wind disturbances is tested and compared against other controllers in simulation, using the robotics operating system and the multipurpose simulation environment Gazebo. A set of six tests was conducted by combining two varying wind speeds that are modeled as the Harris spectrum and three wind directions (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mn>0</mn>\n \n <mo>°</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${0}^{^\\circ }$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mn>90</mn>\n \n <mo>°</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${90}^{^\\circ }$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mn>180</mn>\n \n <mo>°</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> ${180}^{^\\circ }$</annotation>\n </semantics></math>). The simulation results clearly show the advantage of the NNSEM–MPC over the following methods: backstepping controller, sliding mode controller, simplified dynamics MPC (SD-MPC), neural ordinary differential equation MPC (NODE-MPC), and knowledge-based NODE MPC. The proposed NNSEM–MPC approach performs better than the rest in five out of the six test conditions, and it is the second best in the remaining test case, reducing the mean position and heading error by at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>27.08</mn>\n </mrow>\n </mrow>\n <annotation> $27.08$</annotation>\n </semantics></math>% (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0.38</mn>\n </mrow>\n </mrow>\n <annotation> $0.38$</annotation>\n </semantics></math> m) and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>41.02</mn>\n </mrow>\n </mrow>\n <annotation> $41.02$</annotation>\n </semantics></math>% (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0.9</mn>\n \n <msup>\n <mn>3</mn>\n \n <mo>°</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> $0.9{3}^{^\\circ }$</annotation>\n </semantics></math>), respectively, across all the test cases. In terms of execution speed, the proposed NNSEM–MPC is at least 36% faster than the rest of the MPC controllers. The field experiments on two different ASV platforms showed that ASVs can effectively keep the station utilizing the proposed method, with a position error as low as <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1.68</mn>\n </mrow>\n </mrow>\n <annotation> $1.68$</annotation>\n </semantics></math> m and a heading error as low as <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>6.1</mn>\n \n <msup>\n <mn>4</mn>\n \n <mo>°</mo>\n </msup>\n </mrow>\n </mrow>\n <annotation> $6.1{4}^{^\\circ }$</annotation>\n </semantics></math> within time windows of at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>150</mn>\n </mrow>\n </mrow>\n <annotation> $150$</annotation>\n </semantics></math> s. This would increase the potential applications of ASVs for launch, recovery, and replenishment in long-term surveys in collaboration with other autonomous systems.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 6","pages":"1797-1813"},"PeriodicalIF":4.2000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22346","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22346","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Station keeping is an essential maneuver for autonomous surface vehicles (ASVs), mainly when used in confined spaces, to carry out surveys that require the ASV to keep its position or in collaboration with other vehicles where the relative position has an impact over the mission. However, this maneuver can become challenging for classic feedback controllers due to the need for an accurate model of the ASV dynamics and the environmental disturbances. This work proposes a model predictive controller using neural network simulation error minimization (NNSEM–MPC) to accurately predict the dynamics of the ASV under wind disturbances. The performance of the proposed scheme under wind disturbances is tested and compared against other controllers in simulation, using the robotics operating system and the multipurpose simulation environment Gazebo. A set of six tests was conducted by combining two varying wind speeds that are modeled as the Harris spectrum and three wind directions ( 0 ° ${0}^{^\circ }$ , 90 ° ${90}^{^\circ }$ , and 180 ° ${180}^{^\circ }$ ). The simulation results clearly show the advantage of the NNSEM–MPC over the following methods: backstepping controller, sliding mode controller, simplified dynamics MPC (SD-MPC), neural ordinary differential equation MPC (NODE-MPC), and knowledge-based NODE MPC. The proposed NNSEM–MPC approach performs better than the rest in five out of the six test conditions, and it is the second best in the remaining test case, reducing the mean position and heading error by at least 27.08 $27.08$ % ( 0.38 $0.38$  m) and 41.02 $41.02$ % ( 0.9 3 ° $0.9{3}^{^\circ }$ ), respectively, across all the test cases. In terms of execution speed, the proposed NNSEM–MPC is at least 36% faster than the rest of the MPC controllers. The field experiments on two different ASV platforms showed that ASVs can effectively keep the station utilizing the proposed method, with a position error as low as 1.68 $1.68$  m and a heading error as low as 6.1 4 ° $6.1{4}^{^\circ }$ within time windows of at least 150 $150$  s. This would increase the potential applications of ASVs for launch, recovery, and replenishment in long-term surveys in collaboration with other autonomous systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经网络模拟误差最小化模型预测控制在风扰动下保持 ASV 站位
站位保持是自主水面飞行器(ASV)的一项基本操作,主要用于在狭窄空间内进行需要保持位置的勘测,或与其他飞行器合作完成相对位置会对任务产生影响的任务。然而,由于需要 ASV 动力学和环境干扰的精确模型,这种操作对于传统的反馈控制器来说具有挑战性。本研究提出了一种使用神经网络模拟误差最小化(NNSEM-MPC)的模型预测控制器,以准确预测风干扰下 ASV 的动态。利用机器人操作系统和多用途仿真环境 Gazebo,在仿真中测试了所提方案在风干扰下的性能,并与其他控制器进行了比较。结合哈里斯频谱建模的两种不同风速和三种风向(、、和),进行了六次测试。仿真结果清楚地显示了 NNSEM-MPC 相对于以下方法的优势:反步控制器、滑模控制器、简化动力学 MPC(SD-MPC)、神经常微分方程 MPC(NODE-MPC)和基于知识的 NODE MPC。在六种测试条件中,所提出的 NNSEM-MPC 方法在五种测试条件下的表现优于其他方法,在剩余的测试案例中表现第二好,在所有测试案例中分别将平均位置误差和航向误差减少了至少 %(米)和 %()。在执行速度方面,所提出的 NNSEM-MPC 比其他 MPC 控制器至少快 36%。在两个不同的ASV平台上进行的现场实验表明,ASV可以利用所提出的方法有效地保持站位,位置误差低至m,航向误差低至至少s的时间窗口内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
期刊最新文献
Issue Information Cover Image, Volume 41, Number 8, December 2024 Issue Information ForzaETH Race Stack—Scaled Autonomous Head‐to‐Head Racing on Fully Commercial Off‐the‐Shelf Hardware Research on Satellite Navigation Control of Six‐Crawler Machinery Based on Fuzzy PID Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1