On integral theorems and their statistical properties

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences Pub Date : 2024-04-24 DOI:10.1098/rspa.2023.0703
Nhat Ho, Stephen G. Walker
{"title":"On integral theorems and their statistical properties","authors":"Nhat Ho, Stephen G. Walker","doi":"10.1098/rspa.2023.0703","DOIUrl":null,"url":null,"abstract":"<p>We introduce a class of integral theorems based on cyclic functions and Riemann sums approximating integrals. The Fourier integral theorem, derived as a combination of a transform and inverse transform, arises as a special case. The integral theorems provide natural estimators of density functions via Monte Carlo methods. Assessment of the quality of the density estimators can be used to obtain optimal cyclic functions, alternatives to the sin function, which minimize square integrals. Our proof techniques rely on a variational approach in ordinary differential equations and the Cauchy residue theorem in complex analysis.</p>","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0703","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a class of integral theorems based on cyclic functions and Riemann sums approximating integrals. The Fourier integral theorem, derived as a combination of a transform and inverse transform, arises as a special case. The integral theorems provide natural estimators of density functions via Monte Carlo methods. Assessment of the quality of the density estimators can be used to obtain optimal cyclic functions, alternatives to the sin function, which minimize square integrals. Our proof techniques rely on a variational approach in ordinary differential equations and the Cauchy residue theorem in complex analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于积分定理及其统计特性
我们介绍了一类基于循环函数和黎曼和近似积分的积分定理。傅里叶积分定理作为变换和逆变换的结合,是一个特例。积分定理通过蒙特卡罗方法提供了密度函数的自然估计值。对密度估算器质量的评估可用于获得最优循环函数,即 sin 函数的替代函数,它能使平方积分最小化。我们的证明技术依赖于常微分方程中的变分法和复分析中的柯西残差定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
227
审稿时长
3.0 months
期刊介绍: Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.
期刊最新文献
On the well-posedness of Eringen’s non-local elasticity for harmonic plane wave problems On the stability of prestressed beams undergoing nonlinear flexural free oscillations A cluster of N -bubbles driven along a channel at high imposed driving pressure: film orientations and bubble pressures Enhanced interfacial capture with an elliptical cylinder A Comment on: ‘Wind tunnel evaluation of novel drafting formations for an elite marathon runner’ (2023), by Marro M et al.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1