{"title":"Catalytic oxidation of lignin model non-phenolic monomer Veratryl alcohol over iron containing mesoporous SBA-1","authors":"Nirupama Parida, Paresh Kumar Mohanty, Sharada Shrinivas Pati, Sushanta K. Badamali","doi":"10.1007/s10934-024-01624-6","DOIUrl":null,"url":null,"abstract":"<div><p>Mesoporous solids possessing open framework, tunable pores, high surface area, and considerable thermal stability provide an ideal environment to be employed as solid catalysts, host material, adsorbent, etc. Herein, we report the study about the insertion of iron into the mesoporous silicate framework of SBA-1 and utilize the material as a potential heterogeneous catalyst for the selective oxidation of lignin model non-phenolic monomer, i.e. veratryl alcohol under mild reaction conditions. Veratraldehyde and veratric acid were obtained as the oxidation products. FeSBA-1 in combination with hydrogen peroxide was selective towards veratraldehyde, on the other hand, veratric acid was selectively obtained when <i>tert</i>-butyl hydroperoxide was used as the oxidant under identical reaction conditions. X-ray diffraction pattern of FeSBA-1 revealed the formation of a cubic, three-dimensional SBA-1 structure. HRTEM shows uniform and ordered pore structure having dimensions of ∽ 2.3 ̶ 3.4 nm and wall thickness of ∽ 3.5 nm. FESEM showed regular-shaped FeSBA-1 with spherical morphology having a dimension of ∽ 1.6 μm. BET surface area of 1337 m<sup>2</sup> g<sup>−1</sup> and pore diameter of ∽ 19 Å was determined by N<sub>2</sub> adsorption-desorption measurements. The mesoporous nature of FeSBA-1 was further supported by TGA studies. EPR studies indicated the presence of Fe(III) both in tetrahedral and octahedral coordination within the framework of FeSBA-1. DRUV-VIS studies revealed the presence of Fe(III) in both framework and extra-framework locations of the SBA-1 silicate network. IR studies supported the linkage of Fe–O–Si within FeSBA-1. The absence of the Fe<sub>2</sub>O<sub>3</sub> phase was evidenced by Raman studies.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 5","pages":"1629 - 1639"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01624-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Mesoporous solids possessing open framework, tunable pores, high surface area, and considerable thermal stability provide an ideal environment to be employed as solid catalysts, host material, adsorbent, etc. Herein, we report the study about the insertion of iron into the mesoporous silicate framework of SBA-1 and utilize the material as a potential heterogeneous catalyst for the selective oxidation of lignin model non-phenolic monomer, i.e. veratryl alcohol under mild reaction conditions. Veratraldehyde and veratric acid were obtained as the oxidation products. FeSBA-1 in combination with hydrogen peroxide was selective towards veratraldehyde, on the other hand, veratric acid was selectively obtained when tert-butyl hydroperoxide was used as the oxidant under identical reaction conditions. X-ray diffraction pattern of FeSBA-1 revealed the formation of a cubic, three-dimensional SBA-1 structure. HRTEM shows uniform and ordered pore structure having dimensions of ∽ 2.3 ̶ 3.4 nm and wall thickness of ∽ 3.5 nm. FESEM showed regular-shaped FeSBA-1 with spherical morphology having a dimension of ∽ 1.6 μm. BET surface area of 1337 m2 g−1 and pore diameter of ∽ 19 Å was determined by N2 adsorption-desorption measurements. The mesoporous nature of FeSBA-1 was further supported by TGA studies. EPR studies indicated the presence of Fe(III) both in tetrahedral and octahedral coordination within the framework of FeSBA-1. DRUV-VIS studies revealed the presence of Fe(III) in both framework and extra-framework locations of the SBA-1 silicate network. IR studies supported the linkage of Fe–O–Si within FeSBA-1. The absence of the Fe2O3 phase was evidenced by Raman studies.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.