The multifaceted functions of long non-coding RNA HOTAIR in neuropathologies and its potential as a prognostic marker and therapeutic biotarget

IF 4.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Expert Reviews in Molecular Medicine Pub Date : 2024-04-29 DOI:10.1017/erm.2024.11
Faraz Ahmad, Ravi Sudesh, Atheeq Toufeeq Ahmed, Mohanapriya Arumugam, Darin Mansor Mathkor, Shafiul Haque
{"title":"The multifaceted functions of long non-coding RNA HOTAIR in neuropathologies and its potential as a prognostic marker and therapeutic biotarget","authors":"Faraz Ahmad, Ravi Sudesh, Atheeq Toufeeq Ahmed, Mohanapriya Arumugam, Darin Mansor Mathkor, Shafiul Haque","doi":"10.1017/erm.2024.11","DOIUrl":null,"url":null,"abstract":"<p>Long non-coding RNAs (lncRNAs) are progressively being perceived as prominent molecular agents controlling multiple aspects of neuronal (patho)physiology. Amongst these is the HOX transcript antisense intergenic RNA, often abbreviated as <span>HOTAIR</span>. <span>HOTAIR</span> epigenetically regulates its target genes via its interaction with two different chromatin-modifying agents; histone methyltransferase polycomb-repressive complex 2 and histone demethylase lysine-specific demethylase 1. Parenthetically, <span>HOTAIR</span> elicits trans-acting sponging function against multiple micro-RNA species. Oncological research studies have confirmed the pathogenic functions of <span>HOTAIR</span> in multiple cancer types, such as gliomas and proposed it as a pro-oncological lncRNA. In fact, its expression has been suggested to be a predictor of the severity/grade of gliomas, and as a prognostic biomarker. Moreover, a propound influence of <span>HOTAIR</span> in other aspects of brain heath and disease states is just beginning to be unravelled. The objective of this review is to recapitulate all the relevant data pertaining to the regulatory roles of <span>HOTAIR</span> in neuronal (patho)physiology. To this end, we discuss the pathogenic mechanisms of <span>HOTAIR</span> in multiple neuronal diseases, such as neurodegeneration, traumatic brain injury and neuropsychiatric disorders. Finally, we also summarize the results from the studies incriminating <span>HOTAIR</span> in the pathogeneses of gliomas and other brain cancers. Implications of <span>HOTAIR</span> serving as a suitable therapeutic target in neuropathologies are also discussed.</p>","PeriodicalId":50462,"journal":{"name":"Expert Reviews in Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Reviews in Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/erm.2024.11","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Long non-coding RNAs (lncRNAs) are progressively being perceived as prominent molecular agents controlling multiple aspects of neuronal (patho)physiology. Amongst these is the HOX transcript antisense intergenic RNA, often abbreviated as HOTAIR. HOTAIR epigenetically regulates its target genes via its interaction with two different chromatin-modifying agents; histone methyltransferase polycomb-repressive complex 2 and histone demethylase lysine-specific demethylase 1. Parenthetically, HOTAIR elicits trans-acting sponging function against multiple micro-RNA species. Oncological research studies have confirmed the pathogenic functions of HOTAIR in multiple cancer types, such as gliomas and proposed it as a pro-oncological lncRNA. In fact, its expression has been suggested to be a predictor of the severity/grade of gliomas, and as a prognostic biomarker. Moreover, a propound influence of HOTAIR in other aspects of brain heath and disease states is just beginning to be unravelled. The objective of this review is to recapitulate all the relevant data pertaining to the regulatory roles of HOTAIR in neuronal (patho)physiology. To this end, we discuss the pathogenic mechanisms of HOTAIR in multiple neuronal diseases, such as neurodegeneration, traumatic brain injury and neuropsychiatric disorders. Finally, we also summarize the results from the studies incriminating HOTAIR in the pathogeneses of gliomas and other brain cancers. Implications of HOTAIR serving as a suitable therapeutic target in neuropathologies are also discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长非编码 RNA HOTAIR 在神经病变中的多方面功能及其作为预后标记和治疗生物靶点的潜力
长非编码 RNA(lncRNA)逐渐被认为是控制神经元(病理)生理学多个方面的重要分子介质。其中包括 HOX 转录本反义基因间 RNA,通常缩写为 HOTAIR。HOTAIR 通过与两种不同的染色质修饰因子(组蛋白甲基转移酶多聚酶抑制复合体 2 和组蛋白去甲基化酶赖氨酸特异性去甲基化酶 1)相互作用,对其目标基因进行表观遗传调控。此外,HOTAIR 对多种微 RNA 具有反式作用海绵功能。肿瘤学研究证实了 HOTAIR 在神经胶质瘤等多种癌症类型中的致病功能,并提出它是一种促肿瘤的 lncRNA。事实上,它的表达被认为是胶质瘤严重程度/分级的预测因子,也是一种预后生物标志物。此外,HOTAIR 对大脑健康和疾病状态其他方面的影响也刚刚开始揭示。本综述旨在概述与 HOTAIR 在神经元(病理)生理学中的调控作用有关的所有相关数据。为此,我们讨论了 HOTAIR 在神经变性、脑外伤和神经精神疾病等多种神经元疾病中的致病机制。最后,我们还总结了将 HOTAIR 与神经胶质瘤和其他脑癌的发病机制联系起来的研究结果。此外,我们还讨论了将 HOTAIR 作为神经病理学治疗靶点的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Expert Reviews in Molecular Medicine
Expert Reviews in Molecular Medicine BIOCHEMISTRY & MOLECULAR BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
7.40
自引率
1.60%
发文量
45
期刊介绍: Expert Reviews in Molecular Medicine is an innovative online journal featuring authoritative and timely Reviews covering gene therapy, immunotherapeutics, drug design, vaccines, genetic testing, pathogenesis, microbiology, genomics, molecular epidemiology and diagnostic techniques. We especially welcome reviews on translational aspects of molecular medicine, particularly those related to the application of new understanding of the molecular basis of disease to experimental medicine and clinical practice.
期刊最新文献
Cell therapy in Sjögren's syndrome: opportunities and challenges. Radiation drives tertiary lymphoid structures to reshape TME for synergized antitumour immunity. Epigenetic changes in patients with post-acute COVID-19 symptoms (PACS) and long-COVID: A systematic review. Advances in multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer starvation therapy. Thrombocytopenia in dengue infection: mechanisms and a potential application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1