Modelling the Impact of NETosis During the Initial Stage of Systemic Lupus Erythematosus

IF 2.2 4区 数学 Q2 BIOLOGY Bulletin of Mathematical Biology Pub Date : 2024-04-28 DOI:10.1007/s11538-024-01291-3
Vladimira Suvandjieva, Ivanka Tsacheva, Marlene Santos, Georgios Kararigas, Peter Rashkov
{"title":"Modelling the Impact of NETosis During the Initial Stage of Systemic Lupus Erythematosus","authors":"Vladimira Suvandjieva, Ivanka Tsacheva, Marlene Santos, Georgios Kararigas, Peter Rashkov","doi":"10.1007/s11538-024-01291-3","DOIUrl":null,"url":null,"abstract":"<p>The development of autoimmune diseases often takes years before clinical symptoms become detectable. We propose a mathematical model for the immune response during the initial stage of Systemic Lupus Erythematosus which models the process of aberrant apoptosis and activation of macrophages and neutrophils. NETosis is a type of cell death characterised by the release of neutrophil extracellular traps, or NETs, containing material from the neutrophil’s nucleus, in response to a pathogenic stimulus. This process is hypothesised to contribute to the development of autoimmunogenicity in SLE. The aim of this work is to study how NETosis contributes to the establishment of persistent autoantigen production by analysing the steady states and the asymptotic dynamics of the model by numerical experiment.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"76 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01291-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of autoimmune diseases often takes years before clinical symptoms become detectable. We propose a mathematical model for the immune response during the initial stage of Systemic Lupus Erythematosus which models the process of aberrant apoptosis and activation of macrophages and neutrophils. NETosis is a type of cell death characterised by the release of neutrophil extracellular traps, or NETs, containing material from the neutrophil’s nucleus, in response to a pathogenic stimulus. This process is hypothesised to contribute to the development of autoimmunogenicity in SLE. The aim of this work is to study how NETosis contributes to the establishment of persistent autoantigen production by analysing the steady states and the asymptotic dynamics of the model by numerical experiment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
系统性红斑狼疮初期NETosis的影响建模
自身免疫性疾病的发展往往需要数年时间才能发现临床症状。我们提出了一个系统性红斑狼疮初期免疫反应的数学模型,该模型模拟了巨噬细胞和中性粒细胞的异常凋亡和活化过程。NETosis是一种细胞死亡类型,其特点是中性粒细胞胞外捕获物或NETs在病原体刺激下释放,其中含有来自中性粒细胞细胞核的物质。据推测,这一过程有助于系统性红斑狼疮自身免疫原性的发展。这项工作的目的是通过数值实验分析模型的稳态和渐近动态,研究NETosis如何促成持续性自身抗原的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
期刊最新文献
First Explore, Then Settle: A Theoretical Analysis of Evolvability as a Driver of Adaptation. A Nonparametric Approach to Practical Identifiability of Nonlinear Mixed Effects Models. Digital Twins are a Key Enabling Technology for Personalized Medicine. Correction: "Distinguishing Phylogenetic Level-2 Networks with Quartets and Inter-Taxon Quartet Distances". Availability of Charged tRNAs Drives Maximal Protein Synthesis at Intermediate Levels of Codon Usage Bias.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1