Event-triggered secure control under denial-of-service attacks for cyber-physical systems with positive constraint

IF 2.7 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Asian Journal of Control Pub Date : 2024-04-28 DOI:10.1002/asjc.3398
Jiao Liu, Xiaopeng Li, Yixian Liu, Le Kang
{"title":"Event-triggered secure control under denial-of-service attacks for cyber-physical systems with positive constraint","authors":"Jiao Liu,&nbsp;Xiaopeng Li,&nbsp;Yixian Liu,&nbsp;Le Kang","doi":"10.1002/asjc.3398","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the stabilization problem for cyber-physical systems subject to positive constraint and denial-of-service (DoS) attacks using the event-triggered scheme. Unlike traditional modeling of cyber physical systems with DoS attack, this paper establishes a positive switched system model composed of two positive subsystems that according to the DoS attack is active or inactive. Considering the effect of positive constraint and DoS attack, a 1-norm-based event-triggered mechanism is proposed in the sleep interval of DoS attacks. By incorporating switching theory with event-triggered mechanism, the sufficient condition of positive property and exponential stabilization for the considered system is established. Thereafter, the gain matrix of the controller is calculated by matrix decomposition technique. Furthermore, the Zeno behavior is eliminated with a lower bound of the event-triggered interval. Finally, an example is carried out to verify the validity of the theoretical results.</p>","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"26 6","pages":"3179-3189"},"PeriodicalIF":2.7000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asjc.3398","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the stabilization problem for cyber-physical systems subject to positive constraint and denial-of-service (DoS) attacks using the event-triggered scheme. Unlike traditional modeling of cyber physical systems with DoS attack, this paper establishes a positive switched system model composed of two positive subsystems that according to the DoS attack is active or inactive. Considering the effect of positive constraint and DoS attack, a 1-norm-based event-triggered mechanism is proposed in the sleep interval of DoS attacks. By incorporating switching theory with event-triggered mechanism, the sufficient condition of positive property and exponential stabilization for the considered system is established. Thereafter, the gain matrix of the controller is calculated by matrix decomposition technique. Furthermore, the Zeno behavior is eliminated with a lower bound of the event-triggered interval. Finally, an example is carried out to verify the validity of the theoretical results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有正约束条件的网络物理系统在拒绝服务攻击下的事件触发安全控制
本文利用事件触发方案研究了受到正约束和拒绝服务(DoS)攻击的网络物理系统的稳定问题。与传统的具有 DoS 攻击的网络物理系统模型不同,本文建立了一个由两个正向子系统组成的正向切换系统模型,根据 DoS 攻击的不同,两个正向子系统处于活跃或不活跃状态。考虑到正向约束和 DoS 攻击的影响,本文提出了一种基于 1 规范的 DoS 攻击睡眠间隔事件触发机制。通过将开关理论与事件触发机制相结合,建立了所考虑系统的正特性和指数稳定的充分条件。随后,通过矩阵分解技术计算出控制器的增益矩阵。此外,还利用事件触发区间的下限消除了 Zeno 行为。最后,通过一个实例验证了理论结果的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asian Journal of Control
Asian Journal of Control 工程技术-自动化与控制系统
CiteScore
4.80
自引率
25.00%
发文量
253
审稿时长
7.2 months
期刊介绍: The Asian Journal of Control, an Asian Control Association (ACA) and Chinese Automatic Control Society (CACS) affiliated journal, is the first international journal originating from the Asia Pacific region. The Asian Journal of Control publishes papers on original theoretical and practical research and developments in the areas of control, involving all facets of control theory and its application. Published six times a year, the Journal aims to be a key platform for control communities throughout the world. The Journal provides a forum where control researchers and practitioners can exchange knowledge and experiences on the latest advances in the control areas, and plays an educational role for students and experienced researchers in other disciplines interested in this continually growing field. The scope of the journal is extensive. Topics include: The theory and design of control systems and components, encompassing: Robust and distributed control using geometric, optimal, stochastic and nonlinear methods Game theory and state estimation Adaptive control, including neural networks, learning, parameter estimation and system fault detection Artificial intelligence, fuzzy and expert systems Hierarchical and man-machine systems All parts of systems engineering which consider the reliability of components and systems Emerging application areas, such as: Robotics Mechatronics Computers for computer-aided design, manufacturing, and control of various industrial processes Space vehicles and aircraft, ships, and traffic Biomedical systems National economies Power systems Agriculture Natural resources.
期刊最新文献
Issue Information Issue Information Issue Information Issue Information Adaptive output feedback time-varying formation tracking of multi-agent system with a leader of unknown input
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1