{"title":"Physical properties and power conversion efficiency of SrZrX3 (X=S and Se) chalcogenide perovskite solar cell","authors":"Naincy Pandit, Rashmi Singh, Anand Kumar, Tarun Kumar Joshi, Akash Shukla, Upasana Rani, Peeyush Kumar Kamlesh, Tanuj Kumar, Priyanka, Ajay Singh Verma","doi":"10.1142/s0217984924503457","DOIUrl":null,"url":null,"abstract":"<p>The search for efficient substances in energy conversion devices, which are low-cost, highly stable, and not hazardous to humanity has intensified among material scientists. Here, we have investigated the chalcogenide-based metal (Sr — strontium) perovskites in the context of developing materials. We have identified the electrical and optical features of these materials using the modified Becke–Johnson potential, revealing information about their nature. With computed values of 2.009<span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>eV for SrZrS<sub>3</sub> and 1.096<span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>eV for SrZrSe<sub>3</sub>, respectively, they have shown to be direct bandgap semiconductors. We have also found that both materials exhibit transparency to the striking photon at low energy and demonstrate absorption and optical conduction in the UV region. These materials will be useful in thermoelectric devices because the transport property calculation shows that their figure of merit is unity at both low and high temperatures. In regard to applications, we determined the spectroscopic limited maximum efficiency (SLME) of SrZrS<sub>3</sub> (SrZrSe<sub>3</sub>) and discovered that the efficiency increases from 6.3% to 22.3% (7.9% to 32%) when the film thickness is increased from 100<span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>nm to 1<span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span><span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>μ</mi></math></span><span></span>m at 300<span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>K, after that it stabilizes. This research shows that these materials ought to be utilized as an alert substance in the design of energy conversion products, and the proposed results are supported by experimental and other theoretical data. We suggest that these substances are strong contenders for use in power conversion equipment depending upon their optical and transport characteristics.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"70 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503457","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The search for efficient substances in energy conversion devices, which are low-cost, highly stable, and not hazardous to humanity has intensified among material scientists. Here, we have investigated the chalcogenide-based metal (Sr — strontium) perovskites in the context of developing materials. We have identified the electrical and optical features of these materials using the modified Becke–Johnson potential, revealing information about their nature. With computed values of 2.009eV for SrZrS3 and 1.096eV for SrZrSe3, respectively, they have shown to be direct bandgap semiconductors. We have also found that both materials exhibit transparency to the striking photon at low energy and demonstrate absorption and optical conduction in the UV region. These materials will be useful in thermoelectric devices because the transport property calculation shows that their figure of merit is unity at both low and high temperatures. In regard to applications, we determined the spectroscopic limited maximum efficiency (SLME) of SrZrS3 (SrZrSe3) and discovered that the efficiency increases from 6.3% to 22.3% (7.9% to 32%) when the film thickness is increased from 100nm to 1m at 300K, after that it stabilizes. This research shows that these materials ought to be utilized as an alert substance in the design of energy conversion products, and the proposed results are supported by experimental and other theoretical data. We suggest that these substances are strong contenders for use in power conversion equipment depending upon their optical and transport characteristics.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.