Jamshed Khan, Tobias Rubel, Erin Molloy, Laxman Dhulipala, Rob Patro
{"title":"Fast, parallel, and cache-friendly suffix array construction","authors":"Jamshed Khan, Tobias Rubel, Erin Molloy, Laxman Dhulipala, Rob Patro","doi":"10.1186/s13015-024-00263-5","DOIUrl":null,"url":null,"abstract":"String indexes such as the suffix array (sa) and the closely related longest common prefix (lcp) array are fundamental objects in bioinformatics and have a wide variety of applications. Despite their importance in practice, few scalable parallel algorithms for constructing these are known, and the existing algorithms can be highly non-trivial to implement and parallelize. In this paper we present caps-sa, a simple and scalable parallel algorithm for constructing these string indexes inspired by samplesort and utilizing an LCP-informed mergesort. Due to its design, caps-sa has excellent memory-locality and thus incurs fewer cache misses and achieves strong performance on modern multicore systems with deep cache hierarchies. We show that despite its simple design, caps-sa outperforms existing state-of-the-art parallel sa and lcp-array construction algorithms on modern hardware. Finally, motivated by applications in modern aligners where the query strings have bounded lengths, we introduce the notion of a bounded-context sa and show that caps-sa can easily be extended to exploit this structure to obtain further speedups. We make our code publicly available at https://github.com/jamshed/CaPS-SA .","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"75 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms for Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-024-00263-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
String indexes such as the suffix array (sa) and the closely related longest common prefix (lcp) array are fundamental objects in bioinformatics and have a wide variety of applications. Despite their importance in practice, few scalable parallel algorithms for constructing these are known, and the existing algorithms can be highly non-trivial to implement and parallelize. In this paper we present caps-sa, a simple and scalable parallel algorithm for constructing these string indexes inspired by samplesort and utilizing an LCP-informed mergesort. Due to its design, caps-sa has excellent memory-locality and thus incurs fewer cache misses and achieves strong performance on modern multicore systems with deep cache hierarchies. We show that despite its simple design, caps-sa outperforms existing state-of-the-art parallel sa and lcp-array construction algorithms on modern hardware. Finally, motivated by applications in modern aligners where the query strings have bounded lengths, we introduce the notion of a bounded-context sa and show that caps-sa can easily be extended to exploit this structure to obtain further speedups. We make our code publicly available at https://github.com/jamshed/CaPS-SA .
期刊介绍:
Algorithms for Molecular Biology publishes articles on novel algorithms for biological sequence and structure analysis, phylogeny reconstruction, and combinatorial algorithms and machine learning.
Areas of interest include but are not limited to: algorithms for RNA and protein structure analysis, gene prediction and genome analysis, comparative sequence analysis and alignment, phylogeny, gene expression, machine learning, and combinatorial algorithms.
Where appropriate, manuscripts should describe applications to real-world data. However, pure algorithm papers are also welcome if future applications to biological data are to be expected, or if they address complexity or approximation issues of novel computational problems in molecular biology. Articles about novel software tools will be considered for publication if they contain some algorithmically interesting aspects.