{"title":"Strain rate-dependent tensile deformation and failure behavior in single-crystal β-Sn","authors":"Tianhao Yu, Yabin Yan, Fuzhen Xuan","doi":"10.1142/s0217984924503147","DOIUrl":null,"url":null,"abstract":"<p>Given that electronic components often undergo intricate thermal and mechanical loads during operation, comprehensively understanding lead-free solder, particularly solder based on <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span>-Sn, in various complex load conditions, plays a crucial role in ensuring the structural integrity and functional reliability of integrated circuits. Therefore, investigating the mechanical properties and fracture behavior of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span>-Sn as a solder material holds paramount importance. In this study, we performed molecular dynamics simulations using the modified embedded atom method to investigate the mechanical properties and crack propagation of single-crystal <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span>-Sn under different strain rates. The research findings demonstrate that as the strain rate increases, the single-crystal <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span>-Sn exhibits elevated yield strength, fracture strength, and strain, while the elastic modulus decreases. Under higher strain rates, the relationship between dislocation density and strain rate in single-crystal <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span>-Sn is quantitatively elucidated. The substantial increase in internal dislocation density imparts conspicuous strain hardening to the material, rendering plastic deformation more challenging. This observation sheds light on the microscale mechanism of strain hardening at the atomic level. Our results shall facilitate a deeper investigation into the mechanical behavior of single-crystal <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span>-Sn while also paving the path for optimizing the design and application of lead-free solder materials in the electronics industry.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"36 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503147","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Given that electronic components often undergo intricate thermal and mechanical loads during operation, comprehensively understanding lead-free solder, particularly solder based on -Sn, in various complex load conditions, plays a crucial role in ensuring the structural integrity and functional reliability of integrated circuits. Therefore, investigating the mechanical properties and fracture behavior of -Sn as a solder material holds paramount importance. In this study, we performed molecular dynamics simulations using the modified embedded atom method to investigate the mechanical properties and crack propagation of single-crystal -Sn under different strain rates. The research findings demonstrate that as the strain rate increases, the single-crystal -Sn exhibits elevated yield strength, fracture strength, and strain, while the elastic modulus decreases. Under higher strain rates, the relationship between dislocation density and strain rate in single-crystal -Sn is quantitatively elucidated. The substantial increase in internal dislocation density imparts conspicuous strain hardening to the material, rendering plastic deformation more challenging. This observation sheds light on the microscale mechanism of strain hardening at the atomic level. Our results shall facilitate a deeper investigation into the mechanical behavior of single-crystal -Sn while also paving the path for optimizing the design and application of lead-free solder materials in the electronics industry.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.