Diversity of genome size and chromosome number in homothallic and heterothallic strains of the Closterium peracerosum–strigosum–littorale complex (Desmidiales, Zygnematophyceae, Streptophyta)

IF 2.8 3区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Journal of Phycology Pub Date : 2024-04-28 DOI:10.1111/jpy.13457
Yuki Tsuchikane, Misaki Watanabe, Yawako W. Kawaguchi, Koichi Uehara, Tomoaki Nishiyama, Hiroyuki Sekimoto, Takashi Tsuchimatsu
{"title":"Diversity of genome size and chromosome number in homothallic and heterothallic strains of the Closterium peracerosum–strigosum–littorale complex (Desmidiales, Zygnematophyceae, Streptophyta)","authors":"Yuki Tsuchikane,&nbsp;Misaki Watanabe,&nbsp;Yawako W. Kawaguchi,&nbsp;Koichi Uehara,&nbsp;Tomoaki Nishiyama,&nbsp;Hiroyuki Sekimoto,&nbsp;Takashi Tsuchimatsu","doi":"10.1111/jpy.13457","DOIUrl":null,"url":null,"abstract":"<p>The evolutionary transitions of mating systems between outcrossing and self-fertilization are often suggested to associate with the cytological and genomic changes, but the empirical reports are limited in multicellular organisms. Here we used the unicellular zygnematophycean algae, the <i>Closterium peracerosum–strigosum–littorale</i> (<i>C. psl.</i>) complex, to address whether genomic properties such as genome sizes and chromosome numbers are associated with mating system transitions between homothallism (self-fertility) and heterothallism (self-sterility). Phylogenetic analysis revealed the polyphyly of homothallic strains, suggesting multiple transitions between homothallism and heterothallism in the <i>C. psl.</i> complex. Flow cytometry analysis identified a more than 2-fold genome size variation, ranging from 0.53 to 1.42 Gbp, which was positively correlated with chromosome number variation between strains. Although we did not find consistent trends in genome size change and mating system transitions, the mean chromosome sizes tend to be smaller in homothallic strains than in their relative heterothallic strains. This result suggests that homothallic strains possibly have more fragmented chromosomes, which is consistent with the argument that self-fertilizing populations may tolerate more chromosomal rearrangements.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpy.13457","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The evolutionary transitions of mating systems between outcrossing and self-fertilization are often suggested to associate with the cytological and genomic changes, but the empirical reports are limited in multicellular organisms. Here we used the unicellular zygnematophycean algae, the Closterium peracerosum–strigosum–littorale (C. psl.) complex, to address whether genomic properties such as genome sizes and chromosome numbers are associated with mating system transitions between homothallism (self-fertility) and heterothallism (self-sterility). Phylogenetic analysis revealed the polyphyly of homothallic strains, suggesting multiple transitions between homothallism and heterothallism in the C. psl. complex. Flow cytometry analysis identified a more than 2-fold genome size variation, ranging from 0.53 to 1.42 Gbp, which was positively correlated with chromosome number variation between strains. Although we did not find consistent trends in genome size change and mating system transitions, the mean chromosome sizes tend to be smaller in homothallic strains than in their relative heterothallic strains. This result suggests that homothallic strains possibly have more fragmented chromosomes, which is consistent with the argument that self-fertilizing populations may tolerate more chromosomal rearrangements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Closterium peracerosum-strigosum-littorale complex(Desmidiales,Zygnematophyceae,Streptophyta)同种和异种菌株基因组大小和染色体数目的多样性
交配系统在外交和自交之间的进化转变通常被认为与细胞学和基因组的变化有关,但在多细胞生物中的实证报告却很有限。在此,我们利用单细胞齐根藻类--Closterium peracerosum-strigosum-littorale(C. psl.)复合体,探讨基因组大小和染色体数目等基因组特性是否与交配系统在同室生殖(自交)和异室生殖(自雄)之间的转变有关。系统进化分析表明,同雄性菌株具有多型性,这表明在 C. psl.流式细胞仪分析发现基因组大小差异超过 2 倍,从 0.53 到 1.42 Gbp 不等,这与菌株间染色体数目的差异呈正相关。虽然我们没有发现基因组大小变化和交配系统转换的一致趋势,但同雄性品系的平均染色体大小往往小于相对的异雄性品系。这一结果表明,同雄性品系的染色体碎片可能更多,这与自交种群可能容忍更多染色体重排的观点一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Phycology
Journal of Phycology 生物-海洋与淡水生物学
CiteScore
6.50
自引率
3.40%
发文量
69
审稿时长
2 months
期刊介绍: The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
期刊最新文献
Allelopathic activity of cyanobacteria isolated from Lake Tuzkol. Issue Information Kelp dissolved organic carbon release is seasonal and annually enhanced during senescence The photosynthetic performance and photoprotective role of carotenoids response to light stress in intertidal red algae Neoporphyra haitanensis Influence of multi-stressor combinations of pCO2, temperature, and salinity on the toxicity of Heterosigma akashiwo (Raphidophyceae), a fish-killing flagellate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1