Ana Lorena de Brito Soares, Erika Patrícia Chagas Gomes Luz, Rodrigo Silveira Vieira
{"title":"Adsorption processes for forming biomaterials of cellulose and hydroxyapatite for applications in bone tissue regeneration","authors":"Ana Lorena de Brito Soares, Erika Patrícia Chagas Gomes Luz, Rodrigo Silveira Vieira","doi":"10.1007/s10450-024-00441-2","DOIUrl":null,"url":null,"abstract":"<div><p>The bone regeneration process is complex and challenging and requires the application of biomaterials to promote adequate tissue growth and repair. Biomaterials traditionally used are produced with biocompatible and bioinert metal alloys, not presenting any response in the recipient tissue, whether negative, such as inflammation and infections, or positive, such as rapid and effective healing of the injured tissue. Using biomaterials with an active compound adsorbed in their structure allows a direct interaction between the material and the injured tissue, and consequent modulation of biological responses to promote bone formation. Such biomaterials can facilitate the adhesion of osteoprogenitor cells and other important biological factors for bone tissue regeneration and remodeling. This review explores the importance of considering adsorption during biomaterials production and understanding the bone regeneration process. In addition, focus is given to biomaterials produced from biopolymers based on cellulose and hydroxyapatite, as well as mechanisms of bone regeneration. Challenges remain for optimizing these processes, and the adsorption properties of different materials must be carefully investigated to guarantee adequate interaction with bone tissues and cells. Furthermore, the development of strategies to control the release of adsorbed components is crucial to obtain efficient and targeted bone tissue regeneration.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 5","pages":"595 - 607"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00441-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The bone regeneration process is complex and challenging and requires the application of biomaterials to promote adequate tissue growth and repair. Biomaterials traditionally used are produced with biocompatible and bioinert metal alloys, not presenting any response in the recipient tissue, whether negative, such as inflammation and infections, or positive, such as rapid and effective healing of the injured tissue. Using biomaterials with an active compound adsorbed in their structure allows a direct interaction between the material and the injured tissue, and consequent modulation of biological responses to promote bone formation. Such biomaterials can facilitate the adhesion of osteoprogenitor cells and other important biological factors for bone tissue regeneration and remodeling. This review explores the importance of considering adsorption during biomaterials production and understanding the bone regeneration process. In addition, focus is given to biomaterials produced from biopolymers based on cellulose and hydroxyapatite, as well as mechanisms of bone regeneration. Challenges remain for optimizing these processes, and the adsorption properties of different materials must be carefully investigated to guarantee adequate interaction with bone tissues and cells. Furthermore, the development of strategies to control the release of adsorbed components is crucial to obtain efficient and targeted bone tissue regeneration.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.