Chien-Hung Yeh , Yifan Xu , Wenbin Shi , James J. Fitzgerald , Alexander L. Green , Petra Fischer , Huiling Tan , Ashwini Oswal
{"title":"Auditory cues modulate the short timescale dynamics of STN activity during stepping in Parkinson's disease","authors":"Chien-Hung Yeh , Yifan Xu , Wenbin Shi , James J. Fitzgerald , Alexander L. Green , Petra Fischer , Huiling Tan , Ashwini Oswal","doi":"10.1016/j.brs.2024.04.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Gait impairment has a major impact on quality of life in patients with Parkinson's disease (PD). It is believed that basal ganglia oscillatory activity at β frequencies (15–30 Hz) may contribute to gait impairment, but the precise dynamics of this oscillatory activity during gait remain unclear. Additionally, auditory cues are known to lead to improvements in gait kinematics in PD. If the neurophysiological mechanisms of this cueing effect were better understood they could be leveraged to treat gait impairments using adaptive Deep Brain Stimulation (aDBS) technologies.</p></div><div><h3>Objective</h3><p>We aimed to characterize the dynamics of subthalamic nucleus (STN) oscillatory activity during stepping movements in PD and to establish the neurophysiological mechanisms by which auditory cues modulate gait.</p></div><div><h3>Methods</h3><p>We studied STN local field potentials (LFPs) in eight PD patients while they performed stepping movements. Hidden Markov Models (HMMs) were used to discover transient states of spectral activity that occurred during stepping with and without auditory cues.</p></div><div><h3>Results</h3><p>The occurrence of low and high β bursts was suppressed during and after auditory cues. This manifested as a decrease in their fractional occupancy and state lifetimes. Interestingly, α transients showed the opposite effect, with fractional occupancy and state lifetimes increasing during and after auditory cues.</p></div><div><h3>Conclusions</h3><p>We show that STN oscillatory activity in the α and β frequency bands are differentially modulated by gait-promoting oscillatory cues. These findings suggest that the enhancement of α rhythms may be an approach for ameliorating gait impairments in PD.</p></div>","PeriodicalId":9206,"journal":{"name":"Brain Stimulation","volume":"17 3","pages":"Pages 501-509"},"PeriodicalIF":7.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1935861X24000640/pdfft?md5=736a97618065d4196262b2c3fd007b88&pid=1-s2.0-S1935861X24000640-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Stimulation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1935861X24000640","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Gait impairment has a major impact on quality of life in patients with Parkinson's disease (PD). It is believed that basal ganglia oscillatory activity at β frequencies (15–30 Hz) may contribute to gait impairment, but the precise dynamics of this oscillatory activity during gait remain unclear. Additionally, auditory cues are known to lead to improvements in gait kinematics in PD. If the neurophysiological mechanisms of this cueing effect were better understood they could be leveraged to treat gait impairments using adaptive Deep Brain Stimulation (aDBS) technologies.
Objective
We aimed to characterize the dynamics of subthalamic nucleus (STN) oscillatory activity during stepping movements in PD and to establish the neurophysiological mechanisms by which auditory cues modulate gait.
Methods
We studied STN local field potentials (LFPs) in eight PD patients while they performed stepping movements. Hidden Markov Models (HMMs) were used to discover transient states of spectral activity that occurred during stepping with and without auditory cues.
Results
The occurrence of low and high β bursts was suppressed during and after auditory cues. This manifested as a decrease in their fractional occupancy and state lifetimes. Interestingly, α transients showed the opposite effect, with fractional occupancy and state lifetimes increasing during and after auditory cues.
Conclusions
We show that STN oscillatory activity in the α and β frequency bands are differentially modulated by gait-promoting oscillatory cues. These findings suggest that the enhancement of α rhythms may be an approach for ameliorating gait impairments in PD.
期刊介绍:
Brain Stimulation publishes on the entire field of brain stimulation, including noninvasive and invasive techniques and technologies that alter brain function through the use of electrical, magnetic, radiowave, or focally targeted pharmacologic stimulation.
Brain Stimulation aims to be the premier journal for publication of original research in the field of neuromodulation. The journal includes: a) Original articles; b) Short Communications; c) Invited and original reviews; d) Technology and methodological perspectives (reviews of new devices, description of new methods, etc.); and e) Letters to the Editor. Special issues of the journal will be considered based on scientific merit.