{"title":"A Review on the emerging technology of TinyML","authors":"Vasileios Tsoukas, Anargyros Gkogkidis, Eleni Boumpa, Athanasios Kakarountas","doi":"10.1145/3661820","DOIUrl":null,"url":null,"abstract":"<p>Tiny Machine Learning (TinyML) is an emerging technology proposed by the scientific community for developing autonomous and secure devices that can gather, process, and provide results without transferring data to external entities. The technology aims to democratize AI by making it available to more sectors and contribute to the digital revolution of intelligent devices. In this work, a classification of the most common optimization techniques for Neural Network compression is conducted. Additionally, a review of the development boards and TinyML software is presented. Furthermore, the work provides educational resources, a classification of the technology applications, and future directions and concludes with the challenges and considerations.</p>","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3661820","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Tiny Machine Learning (TinyML) is an emerging technology proposed by the scientific community for developing autonomous and secure devices that can gather, process, and provide results without transferring data to external entities. The technology aims to democratize AI by making it available to more sectors and contribute to the digital revolution of intelligent devices. In this work, a classification of the most common optimization techniques for Neural Network compression is conducted. Additionally, a review of the development boards and TinyML software is presented. Furthermore, the work provides educational resources, a classification of the technology applications, and future directions and concludes with the challenges and considerations.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.