{"title":"Single-cell analyzing of tumor microenvironment and cell adhesion between early and late-stage lung cancer","authors":"Chaonan Zhu , Zhiquan Chen , Shuai Wang, Junmei Cao, Yuan Cheng, Maogen Zheng","doi":"10.1016/j.molimm.2024.04.013","DOIUrl":null,"url":null,"abstract":"<div><p>Lung adenocarcinoma (LUAD) is a highly heterogeneous disease that threaten human life with serious incidence and high mortality. High heterogeneity of tumor microenvironment (TME) was reported in multiple studies. However, the factor of controlling the tumor migration progression between eary and late-stage LUAD is still not fully understood. In this study, we conducted a comprehensive analysis of single-cell RNA sequencing (scRNA-seq) data of LUAD obtained from the GEO database. The identification of cell clusters revealed significant expansion of epithelial cells in late-stage patients. Interpretation of the cell-cell communication results between early-stage and late-stage patient samples indicated that early tumor cells may interact with epithelial cells through the TGF-β pathway to promote tumor progression. The cell cycle analysis demonstrated a significant increase in the number of cells in the G2 and M phases in late-stage lung cancer. Further analysis using Non-negative Matrix Factorization (NMF) revealed early-stage cell-specific gene features involved in cell adhesion-related biological processes. Among these, the Tensin (TNS) gene family, particularly TNS1, showed high expression in epithelial cells and fibroblasts of early-stage samples, specifically associated with cell adhesion. Survival analysis using TCGA database for LUAD demonstrated that patients with high expression of TNS1 exhibited significantly higher overall survival rates compared to those with low expression. Immunofluorescence experiments have demonstrated co-expression of TNS1 with fibroblast and tumor cell markers (α-SMA and EPCAM). Immunohistochemistry experiments further validated the significantly higher expression levels of TNS1 in early-stage LUAD tissues compared to late-stage lung cancer tissues (P<0.05). Pathway experiments have shown that early-stage tumor patients with high expression of TNS1 exhibit stronger phosphorylation levels of Akt and mTOR, indicating a more potent activation of the Akt/mTOR signaling pathway. In conclusion, the results of this study demonstrate that TNS1 is an adhesive molecule in the immune microenvironment of early-stage tumor cells, and it may serve as a novel prognostic marker for lug cancer.</p></div>","PeriodicalId":18938,"journal":{"name":"Molecular immunology","volume":"171 ","pages":"Pages 1-11"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016158902400083X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lung adenocarcinoma (LUAD) is a highly heterogeneous disease that threaten human life with serious incidence and high mortality. High heterogeneity of tumor microenvironment (TME) was reported in multiple studies. However, the factor of controlling the tumor migration progression between eary and late-stage LUAD is still not fully understood. In this study, we conducted a comprehensive analysis of single-cell RNA sequencing (scRNA-seq) data of LUAD obtained from the GEO database. The identification of cell clusters revealed significant expansion of epithelial cells in late-stage patients. Interpretation of the cell-cell communication results between early-stage and late-stage patient samples indicated that early tumor cells may interact with epithelial cells through the TGF-β pathway to promote tumor progression. The cell cycle analysis demonstrated a significant increase in the number of cells in the G2 and M phases in late-stage lung cancer. Further analysis using Non-negative Matrix Factorization (NMF) revealed early-stage cell-specific gene features involved in cell adhesion-related biological processes. Among these, the Tensin (TNS) gene family, particularly TNS1, showed high expression in epithelial cells and fibroblasts of early-stage samples, specifically associated with cell adhesion. Survival analysis using TCGA database for LUAD demonstrated that patients with high expression of TNS1 exhibited significantly higher overall survival rates compared to those with low expression. Immunofluorescence experiments have demonstrated co-expression of TNS1 with fibroblast and tumor cell markers (α-SMA and EPCAM). Immunohistochemistry experiments further validated the significantly higher expression levels of TNS1 in early-stage LUAD tissues compared to late-stage lung cancer tissues (P<0.05). Pathway experiments have shown that early-stage tumor patients with high expression of TNS1 exhibit stronger phosphorylation levels of Akt and mTOR, indicating a more potent activation of the Akt/mTOR signaling pathway. In conclusion, the results of this study demonstrate that TNS1 is an adhesive molecule in the immune microenvironment of early-stage tumor cells, and it may serve as a novel prognostic marker for lug cancer.
期刊介绍:
Molecular Immunology publishes original articles, reviews and commentaries on all areas of immunology, with a particular focus on description of cellular, biochemical or genetic mechanisms underlying immunological phenomena. Studies on all model organisms, from invertebrates to humans, are suitable. Examples include, but are not restricted to:
Infection, autoimmunity, transplantation, immunodeficiencies, inflammation and tumor immunology
Mechanisms of induction, regulation and termination of innate and adaptive immunity
Intercellular communication, cooperation and regulation
Intracellular mechanisms of immunity (endocytosis, protein trafficking, pathogen recognition, antigen presentation, etc)
Mechanisms of action of the cells and molecules of the immune system
Structural analysis
Development of the immune system
Comparative immunology and evolution of the immune system
"Omics" studies and bioinformatics
Vaccines, biotechnology and therapeutic manipulation of the immune system (therapeutic antibodies, cytokines, cellular therapies, etc)
Technical developments.