Jimyung Park , Yilu Fang , Casey Ta , Gongbo Zhang , Betina Idnay , Fangyi Chen , David Feng , Rebecca Shyu , Emily R. Gordon , Matthew Spotnitz , Chunhua Weng
{"title":"Criteria2Query 3.0: Leveraging generative large language models for clinical trial eligibility query generation","authors":"Jimyung Park , Yilu Fang , Casey Ta , Gongbo Zhang , Betina Idnay , Fangyi Chen , David Feng , Rebecca Shyu , Emily R. Gordon , Matthew Spotnitz , Chunhua Weng","doi":"10.1016/j.jbi.2024.104649","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Automated identification of eligible patients is a bottleneck of clinical research. We propose Criteria2Query (C2Q) 3.0, a system that leverages GPT-4 for the semi-automatic transformation of clinical trial eligibility criteria text into executable clinical database queries.</p></div><div><h3>Materials and Methods</h3><p>C2Q 3.0 integrated three GPT-4 prompts for concept extraction, SQL query generation, and reasoning. Each prompt was designed and evaluated separately. The concept extraction prompt was benchmarked against manual annotations from 20 clinical trials by two evaluators, who later also measured SQL generation accuracy and identified errors in GPT-generated SQL queries from 5 clinical trials. The reasoning prompt was assessed by three evaluators on four metrics: readability, correctness, coherence, and usefulness, using corrected SQL queries and an open-ended feedback questionnaire.</p></div><div><h3>Results</h3><p>Out of 518 concepts from 20 clinical trials, GPT-4 achieved an F1-score of 0.891 in concept extraction. For SQL generation, 29 errors spanning seven categories were detected, with logic errors being the most common (n = 10; 34.48 %). Reasoning evaluations yielded a high coherence rating, with the mean score being 4.70 but relatively lower readability, with a mean of 3.95. Mean scores of correctness and usefulness were identified as 3.97 and 4.37, respectively.</p></div><div><h3>Conclusion</h3><p>GPT-4 significantly improves the accuracy of extracting clinical trial eligibility criteria concepts in C2Q 3.0. Continued research is warranted to ensure the reliability of large language models.</p></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"154 ","pages":"Article 104649"},"PeriodicalIF":4.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046424000674","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Automated identification of eligible patients is a bottleneck of clinical research. We propose Criteria2Query (C2Q) 3.0, a system that leverages GPT-4 for the semi-automatic transformation of clinical trial eligibility criteria text into executable clinical database queries.
Materials and Methods
C2Q 3.0 integrated three GPT-4 prompts for concept extraction, SQL query generation, and reasoning. Each prompt was designed and evaluated separately. The concept extraction prompt was benchmarked against manual annotations from 20 clinical trials by two evaluators, who later also measured SQL generation accuracy and identified errors in GPT-generated SQL queries from 5 clinical trials. The reasoning prompt was assessed by three evaluators on four metrics: readability, correctness, coherence, and usefulness, using corrected SQL queries and an open-ended feedback questionnaire.
Results
Out of 518 concepts from 20 clinical trials, GPT-4 achieved an F1-score of 0.891 in concept extraction. For SQL generation, 29 errors spanning seven categories were detected, with logic errors being the most common (n = 10; 34.48 %). Reasoning evaluations yielded a high coherence rating, with the mean score being 4.70 but relatively lower readability, with a mean of 3.95. Mean scores of correctness and usefulness were identified as 3.97 and 4.37, respectively.
Conclusion
GPT-4 significantly improves the accuracy of extracting clinical trial eligibility criteria concepts in C2Q 3.0. Continued research is warranted to ensure the reliability of large language models.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.