{"title":"Motion correction and super-resolution for multi-slice cardiac magnetic resonance imaging via an end-to-end deep learning approach","authors":"Zhennong Chen, Hui Ren, Quanzheng Li, Xiang Li","doi":"10.1016/j.compmedimag.2024.102389","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate reconstruction of a high-resolution 3D volume of the heart is critical for comprehensive cardiac assessments. However, cardiac magnetic resonance (CMR) data is usually acquired as a stack of 2D short-axis (SAX) slices, which suffers from the inter-slice misalignment due to cardiac motion and data sparsity from large gaps between SAX slices. Therefore, we aim to propose an end-to-end deep learning (DL) model to address these two challenges simultaneously, employing specific model components for each challenge. The objective is to reconstruct a high-resolution 3D volume of the heart (<span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>HR</mi></mrow></msub></math></span>) from acquired CMR SAX slices (<span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>LR</mi></mrow></msub></math></span>). We define the transformation from <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>LR</mi></mrow></msub></math></span> to <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>HR</mi></mrow></msub></math></span> as a sequential process of motion correction and super-resolution. Accordingly, our DL model incorporates two distinct components. The first component conducts motion correction by predicting displacement vectors to re-position each SAX slice accurately. The second component takes the motion-corrected SAX slices from the first component and performs the super-resolution to fill the data gaps. These two components operate in a sequential way, and the entire model is trained end-to-end. Our model significantly reduced inter-slice misalignment from originally 3.33<span><math><mo>±</mo></math></span>0.74 mm to 1.36<span><math><mo>±</mo></math></span>0.63 mm and generated accurate high resolution 3D volumes with Dice of 0.974<span><math><mo>±</mo></math></span>0.010 for left ventricle (LV) and 0.938<span><math><mo>±</mo></math></span>0.017 for myocardium in a simulation dataset. When compared to the LAX contours in a real-world dataset, our model achieved Dice of 0.945<span><math><mo>±</mo></math></span>0.023 for LV and 0.786<span><math><mo>±</mo></math></span>0.060 for myocardium. In both datasets, our model with specific components for motion correction and super-resolution significantly enhance the performance compared to the model without such design considerations. The codes for our model are available at <span>https://github.com/zhennongchen/CMR_MC_SR_End2End</span><svg><path></path></svg>.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"115 ","pages":"Article 102389"},"PeriodicalIF":5.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000661","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate reconstruction of a high-resolution 3D volume of the heart is critical for comprehensive cardiac assessments. However, cardiac magnetic resonance (CMR) data is usually acquired as a stack of 2D short-axis (SAX) slices, which suffers from the inter-slice misalignment due to cardiac motion and data sparsity from large gaps between SAX slices. Therefore, we aim to propose an end-to-end deep learning (DL) model to address these two challenges simultaneously, employing specific model components for each challenge. The objective is to reconstruct a high-resolution 3D volume of the heart () from acquired CMR SAX slices (). We define the transformation from to as a sequential process of motion correction and super-resolution. Accordingly, our DL model incorporates two distinct components. The first component conducts motion correction by predicting displacement vectors to re-position each SAX slice accurately. The second component takes the motion-corrected SAX slices from the first component and performs the super-resolution to fill the data gaps. These two components operate in a sequential way, and the entire model is trained end-to-end. Our model significantly reduced inter-slice misalignment from originally 3.330.74 mm to 1.360.63 mm and generated accurate high resolution 3D volumes with Dice of 0.9740.010 for left ventricle (LV) and 0.9380.017 for myocardium in a simulation dataset. When compared to the LAX contours in a real-world dataset, our model achieved Dice of 0.9450.023 for LV and 0.7860.060 for myocardium. In both datasets, our model with specific components for motion correction and super-resolution significantly enhance the performance compared to the model without such design considerations. The codes for our model are available at https://github.com/zhennongchen/CMR_MC_SR_End2End.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.