Computational imaging with randomness

IF 1.1 4区 物理与天体物理 Q4 OPTICS Optical Review Pub Date : 2024-04-30 DOI:10.1007/s10043-024-00881-9
Ryoichi Horisaki
{"title":"Computational imaging with randomness","authors":"Ryoichi Horisaki","doi":"10.1007/s10043-024-00881-9","DOIUrl":null,"url":null,"abstract":"<p>Imaging is a longstanding research topic in optics and photonics and is an important tool for a wide range of scientific and engineering fields. Computational imaging is a powerful framework for designing innovative imaging systems by incorporating signal processing into optics. Conventional approaches involve individually designed optical and signal processing systems, which unnecessarily increased costs. Computational imaging, on the other hand, enhances the imaging performance of optical systems, visualizes invisible targets, and minimizes optical hardware. Digital holography and computer-generated holography are the roots of this field. Recent advances in information science, such as deep learning, and increasing computational power have rapidly driven computational imaging and have resulted in the reinvention these imaging technologies. In this paper, I survey recent research topics in computational imaging, where optical randomness is key. Imaging through scattering media, non-interferometric quantitative phase imaging, and real-time computer-generated holography are representative examples. These recent optical sensing and control technologies will serve as the foundations of next-generation imaging systems in various fields, such as biomedicine, security, and astronomy.</p>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Review","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10043-024-00881-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Imaging is a longstanding research topic in optics and photonics and is an important tool for a wide range of scientific and engineering fields. Computational imaging is a powerful framework for designing innovative imaging systems by incorporating signal processing into optics. Conventional approaches involve individually designed optical and signal processing systems, which unnecessarily increased costs. Computational imaging, on the other hand, enhances the imaging performance of optical systems, visualizes invisible targets, and minimizes optical hardware. Digital holography and computer-generated holography are the roots of this field. Recent advances in information science, such as deep learning, and increasing computational power have rapidly driven computational imaging and have resulted in the reinvention these imaging technologies. In this paper, I survey recent research topics in computational imaging, where optical randomness is key. Imaging through scattering media, non-interferometric quantitative phase imaging, and real-time computer-generated holography are representative examples. These recent optical sensing and control technologies will serve as the foundations of next-generation imaging systems in various fields, such as biomedicine, security, and astronomy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机性计算成像
成像是光学和光子学的一个长期研究课题,也是众多科学和工程领域的重要工具。计算成像是一个功能强大的框架,通过将信号处理融入光学来设计创新的成像系统。传统方法涉及单独设计的光学和信号处理系统,不必要地增加了成本。另一方面,计算成像可提高光学系统的成像性能,使不可见目标可视化,并最大限度地减少光学硬件。数字全息技术和计算机生成全息技术是这一领域的基础。近年来,深度学习等信息科学的发展以及计算能力的不断提高,迅速推动了计算成像技术的发展,并导致了这些成像技术的重塑。在本文中,我将介绍计算成像领域的最新研究课题,其中光学随机性是关键所在。散射介质成像、非干涉定量相位成像和实时计算机生成全息成像就是其中的代表。这些最新的光学传感和控制技术将成为生物医学、安全和天文学等各个领域下一代成像系统的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Review
Optical Review 物理-光学
CiteScore
2.30
自引率
0.00%
发文量
62
审稿时长
2 months
期刊介绍: Optical Review is an international journal published by the Optical Society of Japan. The scope of the journal is: General and physical optics; Quantum optics and spectroscopy; Information optics; Photonics and optoelectronics; Biomedical photonics and biological optics; Lasers; Nonlinear optics; Optical systems and technologies; Optical materials and manufacturing technologies; Vision; Infrared and short wavelength optics; Cross-disciplinary areas such as environmental, energy, food, agriculture and space technologies; Other optical methods and applications.
期刊最新文献
The shift–rotation absolute testing method based on autocollimation Research on the technology of realizing normal operation of medium-wave infrared camera in space by simulating a vacuum environment on the ground Research and correction for over-response phenomenon when using inorganic scintillator optical fiber X-ray sensor to measure off-axis ratio (OAR) Novel high light efficiency pancake optics for HMD named “double path” Time synchronization method of wireless distributed sensor node and its application for real-time dust monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1