A novel variational mode decomposition based convolutional neural network for the identification of freezing of gait intervals for patients with Parkinson's disease
{"title":"A novel variational mode decomposition based convolutional neural network for the identification of freezing of gait intervals for patients with Parkinson's disease","authors":"Mohamed Shaban","doi":"10.1016/j.mlwa.2024.100553","DOIUrl":null,"url":null,"abstract":"<div><p>Freezing of gait (FoG) is a debilitating and serious motor system complication of Parkinson's disease (PD) that may expose patients to frequent falls and life-threating injuries. Several artificial and machine learning methods have been proposed for the prediction of FoG based upon a limited time-duration of sensory data, However, most of the related work has been insufficiently trained and tested on smaller datasets compromising the generalizability of the models. Further, the proposed models provided a prediction at a lower rate (e.g., every 7.8 s). In response to the above shortcomings, we propose a novel variational mode decomposition (VMD) based deep learning that is capable of efficiently inferring the occurrence of FoG at a higher time-resolution (i.e., every sampling period of 7.8 ms) and with a subject-independent accuracy up to 98.8 % outperforming the state-of-the-art architectures and the standard LSTM models. The proposed model will enable the prompt detection of FoG episodes and support PD sufferers reducing the likelihood of falls.</p></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"16 ","pages":"Article 100553"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266682702400029X/pdfft?md5=2bda73c87a2dab2da0303eef45731096&pid=1-s2.0-S266682702400029X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266682702400029X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Freezing of gait (FoG) is a debilitating and serious motor system complication of Parkinson's disease (PD) that may expose patients to frequent falls and life-threating injuries. Several artificial and machine learning methods have been proposed for the prediction of FoG based upon a limited time-duration of sensory data, However, most of the related work has been insufficiently trained and tested on smaller datasets compromising the generalizability of the models. Further, the proposed models provided a prediction at a lower rate (e.g., every 7.8 s). In response to the above shortcomings, we propose a novel variational mode decomposition (VMD) based deep learning that is capable of efficiently inferring the occurrence of FoG at a higher time-resolution (i.e., every sampling period of 7.8 ms) and with a subject-independent accuracy up to 98.8 % outperforming the state-of-the-art architectures and the standard LSTM models. The proposed model will enable the prompt detection of FoG episodes and support PD sufferers reducing the likelihood of falls.