Multivariate unified skew-t distributions and their properties

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2024-04-26 DOI:10.1016/j.jmva.2024.105322
Kesen Wang , Maicon J. Karling , Reinaldo B. Arellano-Valle , Marc G. Genton
{"title":"Multivariate unified skew-t distributions and their properties","authors":"Kesen Wang ,&nbsp;Maicon J. Karling ,&nbsp;Reinaldo B. Arellano-Valle ,&nbsp;Marc G. Genton","doi":"10.1016/j.jmva.2024.105322","DOIUrl":null,"url":null,"abstract":"<div><p>The unified skew-<span><math><mi>t</mi></math></span> (SUT) is a flexible parametric multivariate distribution that accounts for skewness and heavy tails in the data. A few of its properties can be found scattered in the literature or in a parameterization that does not follow the original one for unified skew-normal (SUN) distributions, yet a systematic study is lacking. In this work, explicit properties of the multivariate SUT distribution are presented, such as its stochastic representations, moments, SUN-scale mixture representation, linear transformation, additivity, marginal distribution, canonical form, quadratic form, conditional distribution, change of latent dimensions, Mardia measures of multivariate skewness and kurtosis, and non-identifiability issue. These results are given in a parameterization that reduces to the original SUN distribution as a sub-model, hence facilitating the use of the SUT for applications. Several models based on the SUT distribution are provided for illustration.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"203 ","pages":"Article 105322"},"PeriodicalIF":1.4000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000290","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The unified skew-t (SUT) is a flexible parametric multivariate distribution that accounts for skewness and heavy tails in the data. A few of its properties can be found scattered in the literature or in a parameterization that does not follow the original one for unified skew-normal (SUN) distributions, yet a systematic study is lacking. In this work, explicit properties of the multivariate SUT distribution are presented, such as its stochastic representations, moments, SUN-scale mixture representation, linear transformation, additivity, marginal distribution, canonical form, quadratic form, conditional distribution, change of latent dimensions, Mardia measures of multivariate skewness and kurtosis, and non-identifiability issue. These results are given in a parameterization that reduces to the original SUN distribution as a sub-model, hence facilitating the use of the SUT for applications. Several models based on the SUT distribution are provided for illustration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多变量统一偏斜-t 分布及其性质
统一偏斜正态分布(SUT)是一种灵活的参数多元分布,它考虑了数据的偏斜度和重尾。它的一些性质散见于文献或参数化中,与统一偏态正态分布(SUN)的原始参数化不同,但缺乏系统的研究。本研究提出了多元 SUT 分布的明确性质,如随机表示、矩、SUN 尺度混合表示、线性变换、可加性、边际分布、典型形式、二次形式、条件分布、潜维变化、多元偏度和峰度的 Mardia 度量以及不可识别性问题。这些结果以参数化的形式给出,可以还原为原始 SUN 分布的子模型,从而方便了 SUT 的应用。本文提供了几个基于 SUT 分布的模型以作说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Maximum likelihood estimation of elliptical tail Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors A conditional distribution function-based measure for independence and K-sample tests in multivariate data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1