Robust inference of panel data models with interactive fixed effects under long memory: A frequency domain approach

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2024-04-01 DOI:10.1016/j.jeconom.2024.105761
Shuyao Ke , Peter C.B. Phillips , Liangjun Su
{"title":"Robust inference of panel data models with interactive fixed effects under long memory: A frequency domain approach","authors":"Shuyao Ke ,&nbsp;Peter C.B. Phillips ,&nbsp;Liangjun Su","doi":"10.1016/j.jeconom.2024.105761","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies a linear panel data model with interactive fixed effects wherein regressors, factors and idiosyncratic error terms are all stationary but with potential long memory. The setup involves a new formulation of panel data models, where weakly dependent regressors, factors and idiosyncratic errors are embedded as a special case. Standard methods based on principal component decomposition and least squares estimation, as in Bai (2009), are found to be biased and distorted in inference. To cope with this failure and to provide a simple implementable estimation procedure, a frequency domain least squares estimation is proposed. The limit distribution of the frequency domain estimator is established and a self-normalized approach to inference without the need for plug-in estimation of memory parameters is developed. Simulations show that the frequency domain estimator performs robustly under short memory and outperforms the time domain estimator when long range dependence is present. An empirical illustration is provided, examining the long-run relationship between stock returns and realized volatility.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"241 2","pages":"Article 105761"},"PeriodicalIF":9.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001076","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies a linear panel data model with interactive fixed effects wherein regressors, factors and idiosyncratic error terms are all stationary but with potential long memory. The setup involves a new formulation of panel data models, where weakly dependent regressors, factors and idiosyncratic errors are embedded as a special case. Standard methods based on principal component decomposition and least squares estimation, as in Bai (2009), are found to be biased and distorted in inference. To cope with this failure and to provide a simple implementable estimation procedure, a frequency domain least squares estimation is proposed. The limit distribution of the frequency domain estimator is established and a self-normalized approach to inference without the need for plug-in estimation of memory parameters is developed. Simulations show that the frequency domain estimator performs robustly under short memory and outperforms the time domain estimator when long range dependence is present. An empirical illustration is provided, examining the long-run relationship between stock returns and realized volatility.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长记忆下具有交互固定效应的面板数据模型的稳健推断:频域方法
本文研究了一个具有交互固定效应的线性面板数据模型,其中的回归因子、因子和特异性误差项都是静态的,但具有潜在的长记忆。这种设置涉及面板数据模型的一种新表述,其中弱依赖的回归项、因子和特异性误差作为一种特殊情况被嵌入其中。研究发现,基于主成分分解和最小二乘估计的标准方法(如 Bai(2009)的方法)在推论中存在偏差和失真。为了解决这一问题,并提供一个简单可行的估计程序,我们提出了频域最小二乘估计法。建立了频域估计器的极限分布,并开发了一种无需插入式内存参数估计的自归一化推理方法。模拟结果表明,频域估计器在短时记忆下表现稳健,而在存在长距离依赖性时,频域估计器的表现优于时域估计器。本文提供了一个经验性例证,考察了股票回报率与实现波动率之间的长期关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
GLS under monotone heteroskedasticity Multivariate spatiotemporal models with low rank coefficient matrix Estimating and testing for smooth structural changes in moment condition models Validating approximate slope homogeneity in large panels Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1