Antibiotic dose and nutrient availability differentially drive the evolution of antibiotic resistance and persistence

Etthel M Windels, Lloyd Cool, Eline Persy, Janne Swinnen, Paul Matthay, Bram Van den Bergh, Tom Wenseleers, Jan Michiels
{"title":"Antibiotic dose and nutrient availability differentially drive the evolution of antibiotic resistance and persistence","authors":"Etthel M Windels, Lloyd Cool, Eline Persy, Janne Swinnen, Paul Matthay, Bram Van den Bergh, Tom Wenseleers, Jan Michiels","doi":"10.1093/ismejo/wrae070","DOIUrl":null,"url":null,"abstract":"Effective treatment of bacterial infections proves increasingly challenging due to the emergence of bacterial variants that endure antibiotic exposure. Antibiotic resistance and persistence have been identified as two major bacterial survival mechanisms, and several studies have shown a rapid and strong selection of resistance or persistence mutants under repeated drug treatment. Yet, little is known about the impact of the environmental conditions on resistance and persistence evolution, and the potential interplay between both phenotypes. Based on the distinct growth and survival characteristics of resistance and persistence mutants, we hypothesized that the antibiotic dose and availability of nutrients during treatment might play a key role in the evolutionary adaptation to antibiotic stress. To test this hypothesis, we combined high-throughput experimental evolution with a mathematical model of bacterial evolution under intermittent antibiotic exposure. We show that high nutrient levels during antibiotic treatment promote selection of high-level resistance, but that resistance mainly emerges independently of persistence when the antibiotic concentration is sufficiently low. At higher doses, resistance evolution is facilitated by the preceding or concurrent selection of persistence mutants, which ensures survival of populations in harsh conditions. Collectively, our experimental data and mathematical model elucidate the evolutionary routes towards increased bacterial survival under different antibiotic treatment schedules, which is key to designing effective antibiotic therapies.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Effective treatment of bacterial infections proves increasingly challenging due to the emergence of bacterial variants that endure antibiotic exposure. Antibiotic resistance and persistence have been identified as two major bacterial survival mechanisms, and several studies have shown a rapid and strong selection of resistance or persistence mutants under repeated drug treatment. Yet, little is known about the impact of the environmental conditions on resistance and persistence evolution, and the potential interplay between both phenotypes. Based on the distinct growth and survival characteristics of resistance and persistence mutants, we hypothesized that the antibiotic dose and availability of nutrients during treatment might play a key role in the evolutionary adaptation to antibiotic stress. To test this hypothesis, we combined high-throughput experimental evolution with a mathematical model of bacterial evolution under intermittent antibiotic exposure. We show that high nutrient levels during antibiotic treatment promote selection of high-level resistance, but that resistance mainly emerges independently of persistence when the antibiotic concentration is sufficiently low. At higher doses, resistance evolution is facilitated by the preceding or concurrent selection of persistence mutants, which ensures survival of populations in harsh conditions. Collectively, our experimental data and mathematical model elucidate the evolutionary routes towards increased bacterial survival under different antibiotic treatment schedules, which is key to designing effective antibiotic therapies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗生素剂量和营养供应以不同方式驱动抗生素耐药性和持久性的进化
由于出现了耐受抗生素的细菌变种,有效治疗细菌感染变得越来越具有挑战性。抗生素耐药性和持久性已被确定为细菌的两大生存机制,多项研究表明,在反复用药治疗的情况下,耐药性或持久性突变体的选择迅速而强烈。然而,人们对环境条件对耐药性和持久性进化的影响以及这两种表型之间潜在的相互作用知之甚少。根据抗药性突变体和持久性突变体不同的生长和存活特征,我们假设抗生素剂量和治疗过程中的营养供应可能在抗生素胁迫的进化适应过程中起到关键作用。为了验证这一假设,我们将高通量实验进化与间歇性抗生素暴露下细菌进化的数学模型相结合。我们的研究表明,抗生素治疗期间的高营养水平会促进高水平抗药性的选择,但当抗生素浓度足够低时,抗药性的出现主要与持久性无关。在较高剂量下,抗药性的进化得益于之前或同时进行的持久性突变体的选择,这确保了种群在恶劣条件下的生存。总之,我们的实验数据和数学模型阐明了在不同抗生素治疗方案下提高细菌存活率的进化途径,这是设计有效抗生素疗法的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chronic exposure to polycyclic aromatic hydrocarbons alters skin virome composition and virus–host interactions Marine N2-fixer Crocosphaera waterburyi Repeated horizontal acquisition of lagriamide-producing symbionts in Lagriinae beetles Trade-offs between receptor modification and fitness drive host-bacteriophage co-evolution leading to phage extinction or co-existence Metagenomic time-series reveals a western English Channel viral community dominated by members with strong seasonal signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1