Expansion displacement mechanics model of concrete under seawater corrosion

IF 4 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Damage Mechanics Pub Date : 2024-05-01 DOI:10.1177/10567895241245877
Tingwei Chen, Jinhan Chen, Jiankang Chen, Yunfeng Lv
{"title":"Expansion displacement mechanics model of concrete under seawater corrosion","authors":"Tingwei Chen, Jinhan Chen, Jiankang Chen, Yunfeng Lv","doi":"10.1177/10567895241245877","DOIUrl":null,"url":null,"abstract":"In this study, the variation in the expansion displacement of concrete samples with different water-cement ratios under five corrosion solutions (single sulfate salt and coupled sulfate-chloride salt) is explored. The expansion displacement evolution of these concrete samples under sulfate corrosion (single salt corrosion) and sulfate-chloride corrosion (double salt corrosion) is comprehensively examined. The results reveal that the continuous accumulation of corrosion damage eventually manifests in the form of expansion displacement. Based on the experimental results and the chemical reaction rate equation of the delayed ettringite formation and Friedel’s salt generation, an evolution model of expansion force is established. According to this model and the Weibull distribution law of damage, a expansion displacement mechanics model is proposed to predict the expansion displacement behavior of concrete under sulfate corrosion as well as combined sulfate-chloride corrosion.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895241245877","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the variation in the expansion displacement of concrete samples with different water-cement ratios under five corrosion solutions (single sulfate salt and coupled sulfate-chloride salt) is explored. The expansion displacement evolution of these concrete samples under sulfate corrosion (single salt corrosion) and sulfate-chloride corrosion (double salt corrosion) is comprehensively examined. The results reveal that the continuous accumulation of corrosion damage eventually manifests in the form of expansion displacement. Based on the experimental results and the chemical reaction rate equation of the delayed ettringite formation and Friedel’s salt generation, an evolution model of expansion force is established. According to this model and the Weibull distribution law of damage, a expansion displacement mechanics model is proposed to predict the expansion displacement behavior of concrete under sulfate corrosion as well as combined sulfate-chloride corrosion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海水腐蚀下混凝土的膨胀位移力学模型
本研究探讨了不同水灰比的混凝土试样在五种腐蚀溶液(单一硫酸盐盐和硫酸盐-氯化物耦合盐)下的膨胀位移变化。全面考察了这些混凝土试样在硫酸盐腐蚀(单盐腐蚀)和硫酸盐-氯化物腐蚀(双盐腐蚀)下的膨胀位移演变。结果表明,腐蚀损伤的不断累积最终以膨胀位移的形式表现出来。根据实验结果和延迟蚀变体形成与弗里德尔盐生成的化学反应速率方程,建立了膨胀力的演化模型。根据该模型和损伤的 Weibull 分布规律,提出了一种膨胀位移力学模型,用于预测混凝土在硫酸盐腐蚀和硫酸盐-氯化物组合腐蚀下的膨胀位移行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Damage Mechanics
International Journal of Damage Mechanics 工程技术-材料科学:综合
CiteScore
8.70
自引率
26.20%
发文量
48
审稿时长
5.4 months
期刊介绍: Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics. Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department. The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Experimental study on the mechanical properties of red sandstone with fractures under different loading rates Experimental analysis of extrusion-based additive manufacturing process of bio-composite NiTi alloy Damage investigation of hybrid flax-glass/epoxy composites subjected to impact fatigue under water ageing A review of multiaxial low-cycle fatigue criteria for life prediction of metals Damage and fracture studies of continuous flax fiber-reinforced composites 3D printed by in-nozzle impregnation additive manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1