Emergent antibiotic persistence in a spatially structured synthetic microbial mutualism

Xianyi Xiong, Hans G Othmer, William R Harcombe
{"title":"Emergent antibiotic persistence in a spatially structured synthetic microbial mutualism","authors":"Xianyi Xiong, Hans G Othmer, William R Harcombe","doi":"10.1093/ismejo/wrae075","DOIUrl":null,"url":null,"abstract":"Antibiotic persistence (heterotolerance) allows a sub-population of bacteria to survive antibiotic-induced killing and contributes to the evolution of antibiotic resistance. Although bacteria typically live in microbial communities with complex ecological interactions, little is known about how microbial ecology affects antibiotic persistence. Here, we demonstrated within a synthetic two-species microbial mutualism of Escherichia coli and Salmonella enterica that the combination of cross-feeding and community spatial structure can emergently cause high antibiotic persistence in bacteria by increasing the cell-to-cell heterogeneity. Tracking ampicillin-induced death for bacteria on agar surfaces, we found that E. coli forms up to 55 times more antibiotic persisters in the cross-feeding coculture than in monoculture. This high persistence could not be explained solely by the presence of S. enterica, the presence of cross-feeding, average nutrient starvation, or spontaneous resistant mutations. Time-series fluorescent microscopy revealed increased cell-to-cell variation in E. coli lag time in the mutualistic co-culture. Furthermore, we discovered that an E. coli cell can survive antibiotic killing if the nearby S. enterica cells on which it relies die first. In conclusion, we showed that the high antibiotic persistence phenotype can be an emergent phenomenon caused by a combination of cross-feeding and spatial structure. Our work highlights the importance of considering spatially structured interactions during antibiotic treatment and understanding microbial community resilience more broadly.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotic persistence (heterotolerance) allows a sub-population of bacteria to survive antibiotic-induced killing and contributes to the evolution of antibiotic resistance. Although bacteria typically live in microbial communities with complex ecological interactions, little is known about how microbial ecology affects antibiotic persistence. Here, we demonstrated within a synthetic two-species microbial mutualism of Escherichia coli and Salmonella enterica that the combination of cross-feeding and community spatial structure can emergently cause high antibiotic persistence in bacteria by increasing the cell-to-cell heterogeneity. Tracking ampicillin-induced death for bacteria on agar surfaces, we found that E. coli forms up to 55 times more antibiotic persisters in the cross-feeding coculture than in monoculture. This high persistence could not be explained solely by the presence of S. enterica, the presence of cross-feeding, average nutrient starvation, or spontaneous resistant mutations. Time-series fluorescent microscopy revealed increased cell-to-cell variation in E. coli lag time in the mutualistic co-culture. Furthermore, we discovered that an E. coli cell can survive antibiotic killing if the nearby S. enterica cells on which it relies die first. In conclusion, we showed that the high antibiotic persistence phenotype can be an emergent phenomenon caused by a combination of cross-feeding and spatial structure. Our work highlights the importance of considering spatially structured interactions during antibiotic treatment and understanding microbial community resilience more broadly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间结构合成微生物互生系统中抗生素持久性的出现
抗生素持久性(异耐性)可使细菌亚群在抗生素诱导的杀灭作用下存活下来,并促进抗生素耐药性的进化。虽然细菌通常生活在具有复杂生态相互作用的微生物群落中,但人们对微生物生态如何影响抗生素持久性知之甚少。在这里,我们在一个由大肠杆菌和肠炎沙门氏菌组成的合成双种微生物互生系统中证明,交叉互食和群落空间结构的结合可以通过增加细胞间的异质性,在细菌中产生较高的抗生素持久性。通过追踪氨苄西林诱导琼脂表面细菌死亡的情况,我们发现大肠杆菌在交叉觅食共培养过程中形成的抗生素宿存物是单培养过程中的 55 倍。肠杆菌的存在、交叉饲养的存在、平均营养饥饿或自发的耐药性突变都不能完全解释这种高持久性。时间序列荧光显微镜显示,在互助共培养中,细胞与细胞之间大肠杆菌滞后时间的变化增加。此外,我们还发现,如果大肠杆菌赖以生存的附近的肠杆菌细胞首先死亡,那么大肠杆菌细胞就能在抗生素的杀灭下存活下来。总之,我们的研究表明,高抗生素持久性表型可能是交叉取食和空间结构共同作用的结果。我们的工作强调了在抗生素治疗过程中考虑空间结构相互作用以及更广泛地理解微生物群落复原力的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chronic exposure to polycyclic aromatic hydrocarbons alters skin virome composition and virus–host interactions Marine N2-fixer Crocosphaera waterburyi Repeated horizontal acquisition of lagriamide-producing symbionts in Lagriinae beetles Trade-offs between receptor modification and fitness drive host-bacteriophage co-evolution leading to phage extinction or co-existence Metagenomic time-series reveals a western English Channel viral community dominated by members with strong seasonal signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1