Vertical Localization for Strongly Coupled Data Assimilation: Experiments in a Global Coupled Atmosphere-Ocean Model

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Advances in Modeling Earth Systems Pub Date : 2024-05-02 DOI:10.1029/2023MS003783
Zofia C. Stanley, Clara Draper, Sergey Frolov, Laura C. Slivinski, Wei Huang, Henry R. Winterbottom
{"title":"Vertical Localization for Strongly Coupled Data Assimilation: Experiments in a Global Coupled Atmosphere-Ocean Model","authors":"Zofia C. Stanley,&nbsp;Clara Draper,&nbsp;Sergey Frolov,&nbsp;Laura C. Slivinski,&nbsp;Wei Huang,&nbsp;Henry R. Winterbottom","doi":"10.1029/2023MS003783","DOIUrl":null,"url":null,"abstract":"<p>Strongly coupled data assimilation allows observations of one Earth system component (e.g., the ocean) to directly update another component (e.g., the atmosphere). The majority of the information transfer in strongly coupled atmosphere-ocean systems is passed through vertical correlations between atmospheric boundary layer and ocean mixed layer fields. In this work we use correlations from a global, coupled model to study vertical observation-space localization techniques for strongly coupled data assimilation. We generate target correlations using a bootstrapping approach from a single 24 hr forecast from a realistic global, weakly coupled atmosphere-ocean cycling system with an 80-member ensemble, which is the ensemble size currently used by the NOAA operational global data assimilation system. We compare data assimilation methods with different localization schemes using single-update, offline experiments. We develop a new strategy for optimal observation space localization, called Empirical Optimal R-localization (EORL), to give an upper bound on the improvement we can expect with any localization scheme. We then evaluate Gaspari-Cohn localization, which is a commonly used parametric localization function and review its performance with respect to the optimal localization scheme. We investigate how the performance of these localization strategies changes with increasing ensemble sizes. Our results show that strongly coupled data assimilation has the potential to be an improvement over weakly coupled data assimilation when large ensembles are used. We also show that the Gaspari-Cohn localization function does not appear to be a particularly good choice for cross-fluid vertical localization.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003783","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS003783","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Strongly coupled data assimilation allows observations of one Earth system component (e.g., the ocean) to directly update another component (e.g., the atmosphere). The majority of the information transfer in strongly coupled atmosphere-ocean systems is passed through vertical correlations between atmospheric boundary layer and ocean mixed layer fields. In this work we use correlations from a global, coupled model to study vertical observation-space localization techniques for strongly coupled data assimilation. We generate target correlations using a bootstrapping approach from a single 24 hr forecast from a realistic global, weakly coupled atmosphere-ocean cycling system with an 80-member ensemble, which is the ensemble size currently used by the NOAA operational global data assimilation system. We compare data assimilation methods with different localization schemes using single-update, offline experiments. We develop a new strategy for optimal observation space localization, called Empirical Optimal R-localization (EORL), to give an upper bound on the improvement we can expect with any localization scheme. We then evaluate Gaspari-Cohn localization, which is a commonly used parametric localization function and review its performance with respect to the optimal localization scheme. We investigate how the performance of these localization strategies changes with increasing ensemble sizes. Our results show that strongly coupled data assimilation has the potential to be an improvement over weakly coupled data assimilation when large ensembles are used. We also show that the Gaspari-Cohn localization function does not appear to be a particularly good choice for cross-fluid vertical localization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强耦合数据同化的垂直定位:全球大气-海洋耦合模式实验
强耦合数据同化允许地球系统的一个组成部分(如海洋)的观测数据直接更新另一个组成部分(如大气)。在强耦合的大气-海洋系统中,大部分信息传递是通过大气边界层和海洋混合层场之间的垂直关联传递的。在这项工作中,我们利用全球耦合模式的相关性来研究强耦合数据同化的垂直观测空间定位技术。我们采用引导方法,从一个现实的全球弱耦合大气-海洋循环系统的单次 24 小时预报中生成目标相关性,该系统有 80 个成员集合,这是 NOAA 业务全球数据同化系统目前使用的集合规模。我们利用单次更新离线实验,比较了采用不同定位方案的数据同化方法。我们开发了一种新的最优观测空间定位策略,称为经验最优 R 定位(EORL),为我们使用任何定位方案所能预期的改进提供了一个上限。然后,我们对常用的参数定位函数 Gaspari-Cohn 定位进行了评估,并回顾了其与最优定位方案相比的性能。我们研究了这些定位策略的性能如何随着集合规模的增加而变化。我们的结果表明,在使用大型集合时,强耦合数据同化有可能比弱耦合数据同化更好。我们还发现,Gaspari-Cohn 定位函数似乎并不是跨流体垂直定位的最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
期刊最新文献
A Lake Biogeochemistry Model for Global Methane Emissions: Model Development, Site-Level Validation, and Global Applicability Evaluation of Autoconversion Representation in E3SMv2 Using an Ensemble of Large-Eddy Simulations of Low-Level Warm Clouds Description and Evaluation of the CNRM-Cerfacs Climate Prediction System (C3PS) Generative Diffusion for Regional Surrogate Models From Sea-Ice Simulations Contributions of Irrigation Modeling, Soil Moisture and Snow Data Assimilation to High-Resolution Water Budget Estimates Over the Po Basin: Progress Towards Digital Replicas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1