Siderophores and competition for iron govern myxobacterial predation dynamics

Francisco Javier Contreras-Moreno, Aurelio Moraleda-Muñoz, Francisco Javier Marcos-Torres, Virginia Cuéllar, María José Soto, Juana Pérez, José Muñoz-Dorado
{"title":"Siderophores and competition for iron govern myxobacterial predation dynamics","authors":"Francisco Javier Contreras-Moreno, Aurelio Moraleda-Muñoz, Francisco Javier Marcos-Torres, Virginia Cuéllar, María José Soto, Juana Pérez, José Muñoz-Dorado","doi":"10.1093/ismejo/wrae077","DOIUrl":null,"url":null,"abstract":"Bacterial predators are decisive organisms that shape microbial ecosystems. In this study, we investigated the role of iron and siderophores during the predatory interaction between two rhizosphere bacteria: Myxococcus xanthus, an epibiotic predator, and Sinorhizobium meliloti, a bacterium that establishes nitrogen-fixing symbiosis with legumes. The results show that iron enhances the motility of the predator and facilitates its predatory capability, and that intoxication by iron is not used by the predator to prey, although oxidative stress increases in both bacteria during predation. However, competition for iron plays an important role in the outcome of predatory interactions. Using combinations of predator and prey mutants (non-producers and overproducers of siderophores), we have investigated the importance of competition for iron in predation. The results demonstrate that the competitor that, via the production of siderophores, obtains sufficient iron for growth and depletes metal availability for the opponent will prevail in the interaction. Consequently, iron fluctuations in soils may modify the composition of microbial communities by altering the activity of myxobacterial predators. In addition, siderophore overproduction during predation can alter soil properties, affecting the productivity and sustainability of agricultural operations.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial predators are decisive organisms that shape microbial ecosystems. In this study, we investigated the role of iron and siderophores during the predatory interaction between two rhizosphere bacteria: Myxococcus xanthus, an epibiotic predator, and Sinorhizobium meliloti, a bacterium that establishes nitrogen-fixing symbiosis with legumes. The results show that iron enhances the motility of the predator and facilitates its predatory capability, and that intoxication by iron is not used by the predator to prey, although oxidative stress increases in both bacteria during predation. However, competition for iron plays an important role in the outcome of predatory interactions. Using combinations of predator and prey mutants (non-producers and overproducers of siderophores), we have investigated the importance of competition for iron in predation. The results demonstrate that the competitor that, via the production of siderophores, obtains sufficient iron for growth and depletes metal availability for the opponent will prevail in the interaction. Consequently, iron fluctuations in soils may modify the composition of microbial communities by altering the activity of myxobacterial predators. In addition, siderophore overproduction during predation can alter soil properties, affecting the productivity and sustainability of agricultural operations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嗜苷酸盐和对铁的竞争制约着粘菌的捕食动态
细菌捕食者是影响微生物生态系统的决定性生物。在这项研究中,我们调查了铁和嗜苷酸在两种根瘤菌之间的捕食性相互作用中的作用:黄粘球菌是一种外生性捕食者,而瓜萎镰刀菌是一种与豆科植物建立固氮共生关系的细菌。结果表明,铁能增强捕食者的运动能力,促进其捕食能力,虽然在捕食过程中两种细菌的氧化应激都会增加,但捕食者不会利用铁中毒来捕食。然而,对铁的竞争在捕食相互作用的结果中起着重要作用。我们利用捕食者和被捕食者突变体(不生产嗜苷酸盐和过度生产嗜苷酸盐)的组合,研究了铁竞争在捕食中的重要性。结果表明,通过生产嗜苷铁元素获得足够铁元素用于生长并消耗对手金属供应的竞争者将在相互作用中占上风。因此,土壤中铁的波动可能会通过改变粘菌捕食者的活动来改变微生物群落的组成。此外,捕食过程中嗜苷酸盐的过量产生会改变土壤性质,影响农业生产的生产力和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chronic exposure to polycyclic aromatic hydrocarbons alters skin virome composition and virus–host interactions Marine N2-fixer Crocosphaera waterburyi Repeated horizontal acquisition of lagriamide-producing symbionts in Lagriinae beetles Trade-offs between receptor modification and fitness drive host-bacteriophage co-evolution leading to phage extinction or co-existence Metagenomic time-series reveals a western English Channel viral community dominated by members with strong seasonal signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1