Sensitivity analysis of electrodes spacing media for evaluating alkaline electrolyzer performance through CFD modeling

IF 4.2 Q2 ENERGY & FUELS Renewable Energy Focus Pub Date : 2024-04-29 DOI:10.1016/j.ref.2024.100575
Hani Muhsen , Mohammad Alshawabkeh , Mohammed Al-Mahmodi , Adel Ghanem , Ala'aldeen Al-Halhouli
{"title":"Sensitivity analysis of electrodes spacing media for evaluating alkaline electrolyzer performance through CFD modeling","authors":"Hani Muhsen ,&nbsp;Mohammad Alshawabkeh ,&nbsp;Mohammed Al-Mahmodi ,&nbsp;Adel Ghanem ,&nbsp;Ala'aldeen Al-Halhouli","doi":"10.1016/j.ref.2024.100575","DOIUrl":null,"url":null,"abstract":"<div><p>Alkaline Water Electrolyzer (AWE) technology shows promising potential for shifting towards green hydrogen production. With the growing global interest in green hydrogen, understanding the dynamics of AWE systems becomes crucial to improving their performance. Therefore, this paper aims to provide a novel sensitivity analysis aspect to investigate the correlation within parameter variables associated with AWE's electrode separation media. These parameters include electrode-diaphragm gap, temperature, diaphragm thickness, and porosity, aiming to evaluate their impact on AWE current density. The methodology involves the development of a Computational Fluid Dynamics (CFD) model, conducting a parametric study, performing Analysis of Variance (ANOVA), and sensitivity testing within specified parameter ranges. The findings show that diaphragm porosity has a considerable effect, especially between 15 % and 60 % porosity, where the trend levels off at higher values. The electrode-diaphragm gap trend reveals a sensitive, nonlinear increase in cell current density as the gap decreases from its average, with a 75 % decrease yielding over 100 % higher current density, while adjustments beyond 10 mm have minimal impact on current density despite significant variations in other parameters. A 50 % temperature rise increases current density by 40 %, while a 50 % diaphragm width reduction modestly boosts current density by around 10 %. Understanding these sensitivities is vital for optimizing AWE's performance.</p></div>","PeriodicalId":29780,"journal":{"name":"Renewable Energy Focus","volume":"49 ","pages":"Article 100575"},"PeriodicalIF":4.2000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy Focus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755008424000395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Alkaline Water Electrolyzer (AWE) technology shows promising potential for shifting towards green hydrogen production. With the growing global interest in green hydrogen, understanding the dynamics of AWE systems becomes crucial to improving their performance. Therefore, this paper aims to provide a novel sensitivity analysis aspect to investigate the correlation within parameter variables associated with AWE's electrode separation media. These parameters include electrode-diaphragm gap, temperature, diaphragm thickness, and porosity, aiming to evaluate their impact on AWE current density. The methodology involves the development of a Computational Fluid Dynamics (CFD) model, conducting a parametric study, performing Analysis of Variance (ANOVA), and sensitivity testing within specified parameter ranges. The findings show that diaphragm porosity has a considerable effect, especially between 15 % and 60 % porosity, where the trend levels off at higher values. The electrode-diaphragm gap trend reveals a sensitive, nonlinear increase in cell current density as the gap decreases from its average, with a 75 % decrease yielding over 100 % higher current density, while adjustments beyond 10 mm have minimal impact on current density despite significant variations in other parameters. A 50 % temperature rise increases current density by 40 %, while a 50 % diaphragm width reduction modestly boosts current density by around 10 %. Understanding these sensitivities is vital for optimizing AWE's performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 CFD 建模评估碱性电解槽性能的电极间距介质敏感性分析
碱性水电解槽(AWE)技术在转向绿色制氢方面显示出巨大的潜力。随着全球对绿色制氢的兴趣与日俱增,了解 AWE 系统的动态对提高其性能至关重要。因此,本文旨在提供一种新颖的敏感性分析方法,以研究与 AWE 的电极分离介质相关的参数变量之间的相互关系。这些参数包括电极-隔膜间隙、温度、隔膜厚度和孔隙率,旨在评估它们对 AWE 电流密度的影响。该方法包括开发计算流体动力学(CFD)模型、进行参数研究、执行方差分析(ANOVA)以及在指定参数范围内进行敏感性测试。研究结果表明,隔膜孔隙率有相当大的影响,特别是在孔隙率为 15% 到 60% 之间,孔隙率越高,影响越大。电极-隔膜间隙趋势显示,随着间隙从平均值减小,电池电流密度会出现敏感的非线性增长,间隙减小 75% 会使电流密度提高 100%,而超过 10 mm 的调整对电流密度的影响微乎其微,尽管其他参数有显著变化。温度上升 50% 会使电流密度增加 40%,而隔膜宽度减少 50% 则会使电流密度适度增加约 10%。了解这些敏感性对于优化 AWE 的性能至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Renewable Energy Focus
Renewable Energy Focus Renewable Energy, Sustainability and the Environment
CiteScore
7.10
自引率
8.30%
发文量
0
审稿时长
48 days
期刊最新文献
Multi-objective optimization of a biogas-fired gas turbine incorporated with closed Brayton and ejector power/cooling co-generation cycles Transition to a 100% renewable grid for a remote island: A case study of Tsushima Island, Japan PyPSA-BD: A customized model to explore decarbonized energy transition for developing country Renewable hydrogen systems for a sustainable heavy-duty mobility: The Italian case Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1