Juan Gerardo Alcázar , Miroslav Lávička , Jan Vršek
{"title":"Symmetries of planar algebraic vector fields","authors":"Juan Gerardo Alcázar , Miroslav Lávička , Jan Vršek","doi":"10.1016/j.cagd.2024.102290","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we address the computation of the symmetries of polynomial (and thus also rational) planar vector fields using elements from Computer Algebra. We show that they can be recovered from the symmetries of the roots of an associated univariate complex polynomial which is constructed as a generator of a certain elimination ideal. Computing symmetries of the roots of the auxiliary polynomial is a task considerably simpler than the original problem, which can be done efficiently working with classical Computer Algebra tools. Special cases, in which the group of symmetries of the polynomial roots is infinite, are separately considered and investigated. The presented theory is complemented by illustrative examples. The main steps of the procedure for investigating the symmetries of a given polynomial vector field are summarized in a flow chart for clarity.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102290"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624000244","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we address the computation of the symmetries of polynomial (and thus also rational) planar vector fields using elements from Computer Algebra. We show that they can be recovered from the symmetries of the roots of an associated univariate complex polynomial which is constructed as a generator of a certain elimination ideal. Computing symmetries of the roots of the auxiliary polynomial is a task considerably simpler than the original problem, which can be done efficiently working with classical Computer Algebra tools. Special cases, in which the group of symmetries of the polynomial roots is infinite, are separately considered and investigated. The presented theory is complemented by illustrative examples. The main steps of the procedure for investigating the symmetries of a given polynomial vector field are summarized in a flow chart for clarity.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.