{"title":"Behavior of geometrically-similar Basalt FRP bars-reinforced concrete beams under dynamic torsional loads","authors":"Yushuang Lei, Liu Jin, Wenxuan Yu, Xiuli Du","doi":"10.1177/10567895241245860","DOIUrl":null,"url":null,"abstract":"A numerical model utilizing 3D mesoscale simulation methods was developed to investigate the influence of strain rate on the torsional performance of geometrically similar Basalt Fiber Reinforced Polymer bars-reinforced concrete (BFRP-RC) beams, as well as the corresponding size effects. The model incorporates concrete heterogeneity, material strain rate effects, and the dynamic bond-slip relationship between BFRP bars and concrete. The torsional performance of BFRP-RC beams with different structural sizes and stirrup ratios was analyzed under different strain rates. The study yielded the following findings: (1) The damage degree of BFRP-RC beams increases with the rising strain rate. (2) Increasing strain rate and stirrup ratio enhances the beams’ torsional strength and ductility while attenuating the size effect, albeit not eliminating it. (3) The impact of increasing strain rate on beam strength, ductility, and size effect outweighs that of increasing stirrup ratio. Finally, based on the Bažant size effect law (SEL) combined with the simulation results, a new size effect law was proposed that can quantitatively consider the effect of strain rate and stirrup ratio on the torsional strength of BFRP-RC beams.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"235 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895241245860","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A numerical model utilizing 3D mesoscale simulation methods was developed to investigate the influence of strain rate on the torsional performance of geometrically similar Basalt Fiber Reinforced Polymer bars-reinforced concrete (BFRP-RC) beams, as well as the corresponding size effects. The model incorporates concrete heterogeneity, material strain rate effects, and the dynamic bond-slip relationship between BFRP bars and concrete. The torsional performance of BFRP-RC beams with different structural sizes and stirrup ratios was analyzed under different strain rates. The study yielded the following findings: (1) The damage degree of BFRP-RC beams increases with the rising strain rate. (2) Increasing strain rate and stirrup ratio enhances the beams’ torsional strength and ductility while attenuating the size effect, albeit not eliminating it. (3) The impact of increasing strain rate on beam strength, ductility, and size effect outweighs that of increasing stirrup ratio. Finally, based on the Bažant size effect law (SEL) combined with the simulation results, a new size effect law was proposed that can quantitatively consider the effect of strain rate and stirrup ratio on the torsional strength of BFRP-RC beams.
期刊介绍:
Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics.
Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department.
The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).