Xiaoxing Liu, Kai Wang, Guangtao Duan, Shuai Zhang
{"title":"A volume-conservation particle shifting scheme for moving particle method simulating free-surface flow","authors":"Xiaoxing Liu, Kai Wang, Guangtao Duan, Shuai Zhang","doi":"10.1007/s40571-024-00758-3","DOIUrl":null,"url":null,"abstract":"<p>In this study, a novel particle shifting scheme for the moving particle method simulating free surface flow is developed. The overall method is based on the framework of least square moving particle semi-implicit (LSMPS) method, enabling accurate and stable treatment of wall boundary without configuration of dummy or virtual wall particles. To avoid volume expansion, a volume-conservation particle shifting (VCPS) model is developed. An additional term considering the variation of particle numerical density is incorporated into the VCPS model to avoid volume expansion. Several numerical simulations are calculated to validate the effectiveness of the VCPS. It is demonstrated that LSMPS incorporating with VCPS shows satisfactory accuracy and superior capability to conserve volume.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"2019 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00758-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a novel particle shifting scheme for the moving particle method simulating free surface flow is developed. The overall method is based on the framework of least square moving particle semi-implicit (LSMPS) method, enabling accurate and stable treatment of wall boundary without configuration of dummy or virtual wall particles. To avoid volume expansion, a volume-conservation particle shifting (VCPS) model is developed. An additional term considering the variation of particle numerical density is incorporated into the VCPS model to avoid volume expansion. Several numerical simulations are calculated to validate the effectiveness of the VCPS. It is demonstrated that LSMPS incorporating with VCPS shows satisfactory accuracy and superior capability to conserve volume.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.