Limits of Sequential Local Algorithms on the Random $k$-XORSAT Problem

Kingsley Yung
{"title":"Limits of Sequential Local Algorithms on the Random $k$-XORSAT Problem","authors":"Kingsley Yung","doi":"arxiv-2404.17775","DOIUrl":null,"url":null,"abstract":"The random $k$-XORSAT problem is a random constraint satisfaction problem of\n$n$ Boolean variables and $m=rn$ clauses, which a random instance can be\nexpressed as a $G\\mathbb{F}(2)$ linear system of the form $Ax=b$, where $A$ is\na random $m \\times n$ matrix with $k$ ones per row, and $b$ is a random vector.\nIt is known that there exist two distinct thresholds $r_{core}(k) < r_{sat}(k)$\nsuch that as $n \\rightarrow \\infty$ for $r < r_{sat}(k)$ the random instance\nhas solutions with high probability, while for $r_{core} < r < r_{sat}(k)$ the\nsolution space shatters into an exponential number of clusters. Sequential\nlocal algorithms are a natural class of algorithms which assign values to\nvariables one by one iteratively. In each iteration, the algorithm runs some\nheuristics, called local rules, to decide the value assigned, based on the\nlocal neighborhood of the selected variables under the factor graph\nrepresentation of the instance. We prove that for any $r > r_{core}(k)$ the sequential local algorithms with\ncertain local rules fail to solve the random $k$-XORSAT with high probability.\nThey include (1) the algorithm using the Unit Clause Propagation as local rule\nfor $k \\ge 9$, and (2) the algorithms using any local rule that can calculate\nthe exact marginal probabilities of variables in instances with factor graphs\nthat are trees, for $k\\ge 13$. The well-known Belief Propagation and Survey\nPropagation are included in (2). Meanwhile, the best known linear-time\nalgorithm succeeds with high probability for $r < r_{core}(k)$. Our results\nsupport the intuition that $r_{core}(k)$ is the sharp threshold for the\nexistence of a linear-time algorithm for random $k$-XORSAT.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"198 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.17775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The random $k$-XORSAT problem is a random constraint satisfaction problem of $n$ Boolean variables and $m=rn$ clauses, which a random instance can be expressed as a $G\mathbb{F}(2)$ linear system of the form $Ax=b$, where $A$ is a random $m \times n$ matrix with $k$ ones per row, and $b$ is a random vector. It is known that there exist two distinct thresholds $r_{core}(k) < r_{sat}(k)$ such that as $n \rightarrow \infty$ for $r < r_{sat}(k)$ the random instance has solutions with high probability, while for $r_{core} < r < r_{sat}(k)$ the solution space shatters into an exponential number of clusters. Sequential local algorithms are a natural class of algorithms which assign values to variables one by one iteratively. In each iteration, the algorithm runs some heuristics, called local rules, to decide the value assigned, based on the local neighborhood of the selected variables under the factor graph representation of the instance. We prove that for any $r > r_{core}(k)$ the sequential local algorithms with certain local rules fail to solve the random $k$-XORSAT with high probability. They include (1) the algorithm using the Unit Clause Propagation as local rule for $k \ge 9$, and (2) the algorithms using any local rule that can calculate the exact marginal probabilities of variables in instances with factor graphs that are trees, for $k\ge 13$. The well-known Belief Propagation and Survey Propagation are included in (2). Meanwhile, the best known linear-time algorithm succeeds with high probability for $r < r_{core}(k)$. Our results support the intuition that $r_{core}(k)$ is the sharp threshold for the existence of a linear-time algorithm for random $k$-XORSAT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机 $k$-XORSAT 问题上序列局部算法的极限
随机 $k$-XORSAT 问题是一个包含 $n$ 布尔变量和 $m=rn$ 条款的随机约束满足问题,其随机实例可以表达为一个形式为 $Ax=b$ 的 $G\mathbb{F}(2)$ 线性系统,其中 $A$ 是一个每行有 $k$ 个的随机 $m \times n$ 矩阵,而 $b$ 是一个随机向量。众所周知,存在两个不同的阈值 $r_{core}(k) < r_{sat}(k)$,当 $n \rightarrow \infty$ 时,对于 $r < r_{sat}(k)$,随机实例有高概率解,而对于 $r_{core} < r_{sat}(k)$ 时,对于 $n \rightarrow \infty$ ,随机实例有高概率解。< 而当 $r_{core} < r_{sat}(k)$ 时,解空间会破碎成指数数量的簇。序列局部算法是一类自然算法,它逐个迭代地为变量赋值。在每次迭代中,算法都会运行一些启发式方法(称为局部规则),根据实例因子图表示下所选变量的局部邻域来决定赋值。我们证明,对于任意 $r > r_{core}(k)$,具有特定局部规则的连续局部算法都很有可能无法解决随机 $k$-XORSAT 问题,其中包括:(1)对于 $k \ge 9$,使用 "单位条款传播 "作为局部规则的算法;(2)对于 $k\ge 13$,使用任何局部规则的算法,这些局部规则都可以计算出因子图为树的实例中变量的精确边际概率。众所周知的 "信念传播"(Belief Propagation)和 "调查传播"(SurveyPropagation)都包含在 (2) 中。同时,对于 $r < r_{core}(k)$,最著名的线性时间算法成功的概率很高。我们的结果支持了这样的直觉:$r_{core}(k)$ 是随机 $k$-XORSAT 线性时间算法存在的临界值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New Direct Sum Tests Complexity and algorithms for Swap median and relation to other consensus problems Journalists, Emotions, and the Introduction of Generative AI Chatbots: A Large-Scale Analysis of Tweets Before and After the Launch of ChatGPT Almost-catalytic Computation Fast Simulation of Cellular Automata by Self-Composition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1