{"title":"Can ChatGPT evaluate research quality?","authors":"Mike Thelwall","doi":"10.2478/jdis-2024-0013","DOIUrl":null,"url":null,"abstract":"Purpose Assess whether ChatGPT 4.0 is accurate enough to perform research evaluations on journal articles to automate this time-consuming task. Design/methodology/approach Test the extent to which ChatGPT-4 can assess the quality of journal articles using a case study of the published scoring guidelines of the UK Research Excellence Framework (REF) 2021 to create a research evaluation ChatGPT. This was applied to 51 of my own articles and compared against my own quality judgements. Findings ChatGPT-4 can produce plausible document summaries and quality evaluation rationales that match the REF criteria. Its overall scores have weak correlations with my self-evaluation scores of the same documents (averaging r=0.281 over 15 iterations, with 8 being statistically significantly different from 0). In contrast, the average scores from the 15 iterations produced a statistically significant positive correlation of 0.509. Thus, averaging scores from multiple ChatGPT-4 rounds seems more effective than individual scores. The positive correlation may be due to ChatGPT being able to extract the author’s significance, rigour, and originality claims from inside each paper. If my weakest articles are removed, then the correlation with average scores (r=0.200) falls below statistical significance, suggesting that ChatGPT struggles to make fine-grained evaluations. Research limitations The data is self-evaluations of a convenience sample of articles from one academic in one field. Practical implications Overall, ChatGPT does not yet seem to be accurate enough to be trusted for any formal or informal research quality evaluation tasks. Research evaluators, including journal editors, should therefore take steps to control its use. Originality/value This is the first published attempt at post-publication expert review accuracy testing for ChatGPT.","PeriodicalId":44622,"journal":{"name":"Journal of Data and Information Science","volume":"8 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data and Information Science","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.2478/jdis-2024-0013","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose Assess whether ChatGPT 4.0 is accurate enough to perform research evaluations on journal articles to automate this time-consuming task. Design/methodology/approach Test the extent to which ChatGPT-4 can assess the quality of journal articles using a case study of the published scoring guidelines of the UK Research Excellence Framework (REF) 2021 to create a research evaluation ChatGPT. This was applied to 51 of my own articles and compared against my own quality judgements. Findings ChatGPT-4 can produce plausible document summaries and quality evaluation rationales that match the REF criteria. Its overall scores have weak correlations with my self-evaluation scores of the same documents (averaging r=0.281 over 15 iterations, with 8 being statistically significantly different from 0). In contrast, the average scores from the 15 iterations produced a statistically significant positive correlation of 0.509. Thus, averaging scores from multiple ChatGPT-4 rounds seems more effective than individual scores. The positive correlation may be due to ChatGPT being able to extract the author’s significance, rigour, and originality claims from inside each paper. If my weakest articles are removed, then the correlation with average scores (r=0.200) falls below statistical significance, suggesting that ChatGPT struggles to make fine-grained evaluations. Research limitations The data is self-evaluations of a convenience sample of articles from one academic in one field. Practical implications Overall, ChatGPT does not yet seem to be accurate enough to be trusted for any formal or informal research quality evaluation tasks. Research evaluators, including journal editors, should therefore take steps to control its use. Originality/value This is the first published attempt at post-publication expert review accuracy testing for ChatGPT.
期刊介绍:
JDIS devotes itself to the study and application of the theories, methods, techniques, services, infrastructural facilities using big data to support knowledge discovery for decision & policy making. The basic emphasis is big data-based, analytics centered, knowledge discovery driven, and decision making supporting. The special effort is on the knowledge discovery to detect and predict structures, trends, behaviors, relations, evolutions and disruptions in research, innovation, business, politics, security, media and communications, and social development, where the big data may include metadata or full content data, text or non-textural data, structured or non-structural data, domain specific or cross-domain data, and dynamic or interactive data.
The main areas of interest are:
(1) New theories, methods, and techniques of big data based data mining, knowledge discovery, and informatics, including but not limited to scientometrics, communication analysis, social network analysis, tech & industry analysis, competitive intelligence, knowledge mapping, evidence based policy analysis, and predictive analysis.
(2) New methods, architectures, and facilities to develop or improve knowledge infrastructure capable to support knowledge organization and sophisticated analytics, including but not limited to ontology construction, knowledge organization, semantic linked data, knowledge integration and fusion, semantic retrieval, domain specific knowledge infrastructure, and semantic sciences.
(3) New mechanisms, methods, and tools to embed knowledge analytics and knowledge discovery into actual operation, service, or managerial processes, including but not limited to knowledge assisted scientific discovery, data mining driven intelligent workflows in learning, communications, and management.
Specific topic areas may include:
Knowledge organization
Knowledge discovery and data mining
Knowledge integration and fusion
Semantic Web metrics
Scientometrics
Analytic and diagnostic informetrics
Competitive intelligence
Predictive analysis
Social network analysis and metrics
Semantic and interactively analytic retrieval
Evidence-based policy analysis
Intelligent knowledge production
Knowledge-driven workflow management and decision-making
Knowledge-driven collaboration and its management
Domain knowledge infrastructure with knowledge fusion and analytics
Development of data and information services