ABLRI: A program for calculating the long-range interaction energy between two monomers in their non-degenerate states

Yipeng Yu, Dongzheng Yang, Xixi Hu, Daiqian Xie
{"title":"ABLRI: A program for calculating the long-range interaction energy between two monomers in their non-degenerate states","authors":"Yipeng Yu, Dongzheng Yang, Xixi Hu, Daiqian Xie","doi":"10.1063/5.0205486","DOIUrl":null,"url":null,"abstract":"An accurate description of the long-range (LR) interaction is essential for understanding the collision between cold or ultracold molecules. However, to our best knowledge, there lacks a general approach to construct the intermolecular potential energy surface (IPES) between two arbitrary molecules and/or atoms in the LR region. In this work, we derived analytical expressions of the LR interaction energy, using the multipole expansion of the electrostatic interaction Hamiltonian and the non-degenerate perturbation theory. To make these formulae practical, we also derived the independent Cartesian components of the electrostatic properties, including the multipole moments and polarizabilities, of the monomer for a given symmetry using the properties of these components and the group-theoretical methods. Based on these newly derived formulae, we developed a FORTRAN program, namely ABLRI, which is capable of calculating the interaction energy between two arbitrary monomers both in their non-degenerate electronic ground states at large separations. To test the reliability of this newly developed program, we constructed IPESs for the electronic ground state of H2O–H2 and O2–H systems in the LR region. The interaction energy computed by our program agreed well with the ab initio calculation, which shows the validity of this program.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0205486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An accurate description of the long-range (LR) interaction is essential for understanding the collision between cold or ultracold molecules. However, to our best knowledge, there lacks a general approach to construct the intermolecular potential energy surface (IPES) between two arbitrary molecules and/or atoms in the LR region. In this work, we derived analytical expressions of the LR interaction energy, using the multipole expansion of the electrostatic interaction Hamiltonian and the non-degenerate perturbation theory. To make these formulae practical, we also derived the independent Cartesian components of the electrostatic properties, including the multipole moments and polarizabilities, of the monomer for a given symmetry using the properties of these components and the group-theoretical methods. Based on these newly derived formulae, we developed a FORTRAN program, namely ABLRI, which is capable of calculating the interaction energy between two arbitrary monomers both in their non-degenerate electronic ground states at large separations. To test the reliability of this newly developed program, we constructed IPESs for the electronic ground state of H2O–H2 and O2–H systems in the LR region. The interaction energy computed by our program agreed well with the ab initio calculation, which shows the validity of this program.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ABLRI:计算两个单体在非退化状态下长程相互作用能的程序
准确描述长程(LR)相互作用对于理解冷分子或超冷分子之间的碰撞至关重要。然而,据我们所知,目前还缺乏一种通用方法来构建两个任意分子和/或原子之间在长程作用区域的分子间势能面(IPES)。在这项工作中,我们利用静电相互作用哈密顿的多极扩展和非退化扰动理论,推导出了 LR 相互作用能的分析表达式。为了使这些公式实用化,我们还利用这些分量的性质和群论方法,推导出了给定对称性下单体静电性质的独立笛卡尔分量,包括多极矩和极化率。根据这些新推导出的公式,我们开发了一个 FORTRAN 程序,即 ABLRI,该程序能够计算两个任意单体在大间隔非退化电子基态下的相互作用能。为了测试这一新开发程序的可靠性,我们构建了 H2O-H2 和 O2-H 系统在 LR 区域的电子基态 IPES。我们的程序计算出的相互作用能与 ab initio 计算结果非常吻合,这表明了该程序的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Substitutional Cu doping at the cation sites in Ba2YNbO6 toward improved visible-light photoactivity—A first-principles HSE06 study GW with hybrid functionals for large molecular systems Classical and quantum thermodynamics in a non-equilibrium regime: Application to thermostatic Stirling engine Thermodynamic quantum Fokker–Planck equations and their application to thermostatic Stirling engine The “simple” photochemistry of thiophene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1