{"title":"Adaptive containment fault-tolerant control for saturated nonlinear multiagent systems with multiple faults and periodic disturbances","authors":"Li Tang, Huanqing Wang, Ben Niu, Xudong Zhao","doi":"10.1002/asjc.3401","DOIUrl":null,"url":null,"abstract":"<p>This paper addresses the problem of adaptive containment fault-tolerant control for nonlinear multiagent systems with periodic disturbances. Different from most existing fault-tolerant control schemes, the form of multiple faults is explicitly considered in this paper, including actuator faults and sensor faults. By combining the Fourier series expansion with neural networks, the unknown nonlinear dynamics subject to time-dependent periodic disturbances are approximated. Then, the “complexity of explosion” issue that exists in traditional backstepping-based results is avoided by introducing a first-order sliding-mode differentiator. It is proved that the developed containment control policies can ensure that all signals of the close-loop systems are uniformly ultimately bounded, and all followers can converge to a convex area formed by multiple leaders. Simulation results verify the validity of the proposed scheme.</p>","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"26 6","pages":"3235-3253"},"PeriodicalIF":2.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asjc.3401","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the problem of adaptive containment fault-tolerant control for nonlinear multiagent systems with periodic disturbances. Different from most existing fault-tolerant control schemes, the form of multiple faults is explicitly considered in this paper, including actuator faults and sensor faults. By combining the Fourier series expansion with neural networks, the unknown nonlinear dynamics subject to time-dependent periodic disturbances are approximated. Then, the “complexity of explosion” issue that exists in traditional backstepping-based results is avoided by introducing a first-order sliding-mode differentiator. It is proved that the developed containment control policies can ensure that all signals of the close-loop systems are uniformly ultimately bounded, and all followers can converge to a convex area formed by multiple leaders. Simulation results verify the validity of the proposed scheme.
期刊介绍:
The Asian Journal of Control, an Asian Control Association (ACA) and Chinese Automatic Control Society (CACS) affiliated journal, is the first international journal originating from the Asia Pacific region. The Asian Journal of Control publishes papers on original theoretical and practical research and developments in the areas of control, involving all facets of control theory and its application.
Published six times a year, the Journal aims to be a key platform for control communities throughout the world.
The Journal provides a forum where control researchers and practitioners can exchange knowledge and experiences on the latest advances in the control areas, and plays an educational role for students and experienced researchers in other disciplines interested in this continually growing field. The scope of the journal is extensive.
Topics include:
The theory and design of control systems and components, encompassing:
Robust and distributed control using geometric, optimal, stochastic and nonlinear methods
Game theory and state estimation
Adaptive control, including neural networks, learning, parameter estimation
and system fault detection
Artificial intelligence, fuzzy and expert systems
Hierarchical and man-machine systems
All parts of systems engineering which consider the reliability of components and systems
Emerging application areas, such as:
Robotics
Mechatronics
Computers for computer-aided design, manufacturing, and control of
various industrial processes
Space vehicles and aircraft, ships, and traffic
Biomedical systems
National economies
Power systems
Agriculture
Natural resources.