A novel graph-based multiple kernel learning framework for hyperspectral image classification

IF 3 3区 地球科学 Q2 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY International Journal of Remote Sensing Pub Date : 2024-04-26 DOI:10.1080/01431161.2024.2343132
Shirin Hassanzadeh, Habibollah Danyali, Azam Karami, Mohammad Sadegh Helfroush
{"title":"A novel graph-based multiple kernel learning framework for hyperspectral image classification","authors":"Shirin Hassanzadeh, Habibollah Danyali, Azam Karami, Mohammad Sadegh Helfroush","doi":"10.1080/01431161.2024.2343132","DOIUrl":null,"url":null,"abstract":"Multiple kernel learning (MKL) is an efficient way to improve hyperspectral image classification with few training samples by integrating spectral and spatial features. Nonetheless, presenting a MK...","PeriodicalId":14369,"journal":{"name":"International Journal of Remote Sensing","volume":"90 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01431161.2024.2343132","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple kernel learning (MKL) is an efficient way to improve hyperspectral image classification with few training samples by integrating spectral and spatial features. Nonetheless, presenting a MK...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高光谱图像分类的基于图的新型多核学习框架
多核学习(MKL)通过整合光谱和空间特征,是一种利用少量训练样本改进高光谱图像分类的有效方法。尽管如此,提出 MKL...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Remote Sensing
International Journal of Remote Sensing 工程技术-成像科学与照相技术
CiteScore
7.00
自引率
5.90%
发文量
219
审稿时长
4.8 months
期刊介绍: The International Journal of Remote Sensing ( IJRS) is concerned with the theory, science and technology of remote sensing and novel applications of remotely sensed data. The journal’s focus includes remote sensing of the atmosphere, biosphere, cryosphere and the terrestrial earth, as well as human modifications to the earth system. Principal topics include: • Remotely sensed data collection, analysis, interpretation and display. • Surveying from space, air, water and ground platforms. • Imaging and related sensors. • Image processing. • Use of remotely sensed data. • Economic surveys and cost-benefit analyses. • Drones Section: Remote sensing with unmanned aerial systems (UASs, also known as unmanned aerial vehicles (UAVs), or drones).
期刊最新文献
Assessment of yield loss due to fall armyworm in maize using high-resolution multispectral spaceborne remote sensing Structural graph learning method for hyperspectral band selection Dynamic region growing approach for leaf-wood separation of individual trees based on geometric features and growing patterns Feature extraction via 3-D homogeneous attribute decomposition for hyperspectral imagery classification Hyper-Parameter Optimization-based multi-source fusion for remote sensing inversion of non-photosensitive water quality parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1