DAM: A Universal Dual Attention Mechanism for Multimodal Timeseries Cryptocurrency Trend Forecasting

Yihang Fu, Mingyu Zhou, Luyao Zhang
{"title":"DAM: A Universal Dual Attention Mechanism for Multimodal Timeseries Cryptocurrency Trend Forecasting","authors":"Yihang Fu, Mingyu Zhou, Luyao Zhang","doi":"arxiv-2405.00522","DOIUrl":null,"url":null,"abstract":"In the distributed systems landscape, Blockchain has catalyzed the rise of\ncryptocurrencies, merging enhanced security and decentralization with\nsignificant investment opportunities. Despite their potential, current research\non cryptocurrency trend forecasting often falls short by simplistically merging\nsentiment data without fully considering the nuanced interplay between\nfinancial market dynamics and external sentiment influences. This paper\npresents a novel Dual Attention Mechanism (DAM) for forecasting cryptocurrency\ntrends using multimodal time-series data. Our approach, which integrates\ncritical cryptocurrency metrics with sentiment data from news and social media\nanalyzed through CryptoBERT, addresses the inherent volatility and prediction\nchallenges in cryptocurrency markets. By combining elements of distributed\nsystems, natural language processing, and financial forecasting, our method\noutperforms conventional models like LSTM and Transformer by up to 20\\% in\nprediction accuracy. This advancement deepens the understanding of distributed\nsystems and has practical implications in financial markets, benefiting\nstakeholders in cryptocurrency and blockchain technologies. Moreover, our\nenhanced forecasting approach can significantly support decentralized science\n(DeSci) by facilitating strategic planning and the efficient adoption of\nblockchain technologies, improving operational efficiency and financial risk\nmanagement in the rapidly evolving digital asset domain, thus ensuring optimal\nresource allocation.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.00522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the distributed systems landscape, Blockchain has catalyzed the rise of cryptocurrencies, merging enhanced security and decentralization with significant investment opportunities. Despite their potential, current research on cryptocurrency trend forecasting often falls short by simplistically merging sentiment data without fully considering the nuanced interplay between financial market dynamics and external sentiment influences. This paper presents a novel Dual Attention Mechanism (DAM) for forecasting cryptocurrency trends using multimodal time-series data. Our approach, which integrates critical cryptocurrency metrics with sentiment data from news and social media analyzed through CryptoBERT, addresses the inherent volatility and prediction challenges in cryptocurrency markets. By combining elements of distributed systems, natural language processing, and financial forecasting, our method outperforms conventional models like LSTM and Transformer by up to 20\% in prediction accuracy. This advancement deepens the understanding of distributed systems and has practical implications in financial markets, benefiting stakeholders in cryptocurrency and blockchain technologies. Moreover, our enhanced forecasting approach can significantly support decentralized science (DeSci) by facilitating strategic planning and the efficient adoption of blockchain technologies, improving operational efficiency and financial risk management in the rapidly evolving digital asset domain, thus ensuring optimal resource allocation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DAM:用于多模态时间序列加密货币趋势预测的通用双重关注机制
在分布式系统领域,区块链催生了加密货币的兴起,将增强的安全性和去中心化与重要的投资机会结合在一起。尽管加密货币具有潜力,但目前关于加密货币趋势预测的研究往往存在不足,即简单地合并情绪数据,而没有充分考虑金融市场动态与外部情绪影响之间的微妙相互作用。本文介绍了一种利用多模态时间序列数据预测加密货币趋势的新型双重关注机制(DAM)。我们的方法将关键的加密货币指标与通过 CryptoBERT 分析的新闻和社交媒体的情绪数据相结合,解决了加密货币市场固有的波动性和预测难题。通过结合分布式系统、自然语言处理和金融预测等元素,我们的方法在预测准确性上超越了 LSTM 和 Transformer 等传统模型,最高可达 20%。这一进步加深了人们对分布式系统的理解,并对金融市场产生了实际影响,使加密货币和区块链技术的利益相关者受益匪浅。此外,我们的增强型预测方法可以通过促进战略规划和高效采用区块链技术,在快速发展的数字资产领域提高运营效率和金融风险管理水平,从而确保优化资源配置,为去中心化科学(DeSci)提供重要支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1